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MicroRNAs (miRNAs) are small non-coding RNAs that regulate multiple target genes providing fine-tuned 
coordinated expression.  Growing evidence suggests that miRNAs play important roles in lung development and 
the pathogenesis of lung disease and that they have great potential as novel therapeutic targets for the treatment 
of diseases such as lung cancer, asthma, pulmonary fibrosis, and chronic obstructive pulmonary disease (COPD).  
We have previously shown that miR-146a is a promising therapeutic target for controlling abnormal inflammatory 
response in COPD through a series of in vitro experiments in lung fibroblasts.  However, further investigations in 
in vivo experimental models are needed to explore the role of miR-146a in the pathogenesis and therapy of COPD.  
Recently, miRNAs encapsulated in extracellular vesicles (EVs) have been recognized as modulators of intercellular 
communication.  EVs, therefore, may also have therapeutic potential and show promise for use as biomarkers 
for various lung diseases.  In addition to miRNAs, we briefly discuss a specific long non-coding RNA (lncRNA) 
that may contribute to the pathogenesis of COPD.  The application of miRNA-based therapeutics faces several 
challenges related to mode of delivery, stability, and tissue specificity.  However, recent advances in nanotechnology 
are expected to prove valuable for the development of miRNA-based therapeutics to treat lung disease.
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Introduction
MicroRNAs (miRNAs) have been the focus of much 
attention worldwide since their discovery by Ambros 
et al in 1993.1  Lin-4 was the first miRNA to be 
identified through a study of developmental timing 
in the nematode Caenorhabditis elegans.  miRNAs 
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are non-coding endogenous RNAs, approximately 
19- to 25-nucleotides long, which play a role in the 
post-transcriptional regulation of gene expression.  
Briefly, miRNA biogenesis begins with the cleavage 
of a pri-miRNA into a pre-miRNA, which is mediated 
by the Drosha enzyme (Figure 1).  The pre-miRNA is 
then actively transported from the nucleus into the 

cytoplasm by Exportin-5. Next, the RNase III enzyme 
Dicer processes the pre-miRNA to generate a double-
stranded RNA.  One strand is degraded and the other is 
incorporated into the RNA-induced silencing complex 
(RISC), which then functions as a mature miRNA against 
its target mRNAs.  The mature miRNAs, which are 
expressed during development in a tissue- or cell type-
specific manner, mediate post-transcriptional repression 
of gene expression by increasing mRNA degradation 
or by inhibiting translation.2  This is achieved by 
direct binding between the miRNA 5’ region and the 
3’ untranslated region of the target mRNA.  miRNAs 
may also indirectly alter gene expression by epigenetic 
mechanisms such as DNA methylation and histone 
acetylation.3,4  These processes enable a fine tuning 
of gene expression as opposed to an on-off switch.5  
To date, over 4000 miRNAs have been discovered in 
multicellular eukaryotes and more than 1000 miRNAs 
have been identified in humans.  MiRNAs have been 
found to be associated with diverse biological processes 
such as development, cellular differentiation, and the 
pathogenesis of various diseases.

The various roles of miRNAs in lung development 
and disease have been studied widely (shown in Table 
1).  miR-17-92-deficient mice were found to possess 
underdeveloped lungs, whereas mice in which miR-

MicroRNAs ―Roles in Lung 
Development and Disease 

17-92 was overexpressed showed highly proliferative 
undifferentiated epithelia,6,7 indicating that this miRNA 
plays a role in lung development.  miRNAs also act as 
immunomodulators, as indicated by the upregulation of 
miR-132, miR-146a, and miR-155 and downregulation 
of miR-125b in macrophage cell lines in response to 
stimulation with endotoxin.8,9  The pathogenetic roles 
of miRNAs in lung diseases such as lung cancer, asthma, 
pulmonary fibrosis, and chronic obstructive pulmonary 
disease (COPD) have also been investigated.  There 
have already been numerous reports that focus on 
miRNAs in lung cancer.  For example, the Let-7 gene is 
known for its role as a tumor suppressor, whereas miR-
17-92 functions as an oncogene in lung cancer.10,11  
To date, in vitro and in vivo studies have implicated 
several miRNAs as crucial factors for the pathogenesis 
of asthma.  Mattes et al showed that T helper type 
2 (Th2)-associated inflammation induces increased 
expression of miR-126 and selective blockade of miR-
126 suppresses the asthmatic phenotype.12  On the 
other hand, Chiba et al reported decreased expression 
of miR-133a in bronchial smooth muscle cells following 
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treatment with a major Th2 cytokine, interleukin 
(IL)-13.13  In addition, Rodriguez et al reported that 
miR-155 knockout mice developed an asthma-like 
phenotype with inflammatory infiltration into the lung 
and spontaneous airway remodeling.14  Our group also 
reported that miR-155 is associated with the asthmatic 
phenotype of fibroblast-like cells derived from human 
embryonic stem cells.15  We have demonstrated that 
IL-4 induces differentiation of stem/precursor cells into 
fibroblast-like cells that demonstrate a more fibrogenic 
phenotype, which is due to reduced expression of miR-
155.  Regarding pulmonary fibrosis, Liu et al reported that 
the expression of miR-21 is increased in both a murine 
fibrosis model and in human specimens.16  Furthermore, 
Pandit et al reported that the downregulation of let-7d 
expression by administration of antagomir resulted in 
increased epithelial-mesenchymal transition changes 
in vitro and collagen deposition and alveolar septal 
thickening in vivo.17

Cigarette smoking is the main cause of COPD; 
however, the pathogenetic mechanisms underlying this 
disease are poorly understood. Epigenetic regulation is 
considered to play an important role in the pathogenesis 
of COPD.  Schembri et al examined whole-genome 
miRNA and mRNA expression in the bronchial airway 
epithelium in current and never smokers and found 
that miR-218 levels modulate airway epithelial gene 
expression in response to exposure to cigarette smoke.18 
Ezzie et al compared the miRNA profile in lung tissue 
from non-COPD smokers with that in lung tissue from 
COPD individuals and found that 70 miRNAs were 
differentially expressed and that miR-15b, in particular, 
was increased in COPD.19 miR-15b was shown to be 
increased in COPD samples compared with controls 
and was differentially expressed in correlation with 
disease severity by the Global initiative for obstructive 
Lung Disease (GOLD) classification.  The authors have 
further described that expression of Smad7, which 
was validated as a target for miR-15b, was decreased 
in bronchial epithelial cells in COPD.  Our group 
reported reduced expression of miR-146a in lung 
fibroblasts from COPD patients compared with that 
observed in lung fibroblasts from non-COPD patients, 
following stimulation by the inflammatory cytokines, 
IL-1β and tumor necrosis factor (TNF)-α20  As shown 
in Figure 2, we further showed that miR-146a causes 
downregulation of the production of prostaglandin 
E2 (PGE2), an inflammatory mediator, by targeting 
cyclooxygenase-2 (COX-2).  Interestingly, miR-146a 

levels were found to be increased in synovial tissue from 
individuals with rheumatoid arthritis, suggesting that 
this miRNA is also associated with the pathogenetic 
mechanisms underlying other inflammatory 
diseases.21,22  miR-146a is also known to downregulate 
nuclear factor (NF)-κB activity by repressing the NF-κB 
transducers IL-1 receptor-associated kinase and TNF 
receptor-associated factor 6.8  We, therefore, concluded 
that miR-146a may represent a promising therapeutic 
target for controlling abnormal inflammatory response 
in COPD.20  However, further investigations in in vivo 
experimental models are needed to explore the role of 
miR-146a in the pathogenesis and therapy of COPD.

Other miRNAs have also been reported to be 
associated with the pathogenesis of COPD.23,24  Lewis 
et al described that miR-1, which is one of the muscle-
specific miRNAs, is downregulated in the quadriceps of 
patients with COPD.25  The same group also showed 
that skeletal muscle-specific miRNAs (miR-1, 499, 133 
and 206) are elevated in the plasma of stable COPD 
compared with controls.26  The authors speculated 
that these miRNAs may contribute to the development 
of skeletal muscle dysfunction in COPD and may 
be a future diagnostic tool for that condition.  Van 
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Pottelberge et al analyzed the miRNA profile in induced 
sputum and showed that let-7c is significantly reduced 
in COPD individuals compared with smokers without 
COPD.27  Moreover, let-7c has been associated with 
increased expression of TNF receptor II, which may be 
related to the pathogenesis of COPD as demonstrated 
by a TNF receptor II knockout mice study.27,28  Hassan 
et al examined the effect of cigarette smoke extract 
(CSE) on the human bronchial epithelial cells and 
showed that miR-101 and miR-144 are upregulated by 
CSE and suppress the cystic fibrosis transmembrane 
conductance regulator protein, a chloride channel 
involved in the maintenance of fluid homeostasis in 
the lung.29  A recent analysis of human lung tissue 
with regional emphysema revealed that miR-638 is 
positively correlated with emphysema severity and 
regulates gene expression networks associated with the 
oxidative stress response and aging in emphysematous 
lung tissue.30

MicroRNAs ―Novel Therapeutic 
Targets 

MiRNAs show great potential as novel therapeutic 
targets for the treatment of numerous diseases.  To date, 
several miRNAs have been developed as drugs and 
tested in clinical trials.  For example, Santaris Pharma 
has developed a locked nucleic acid-based antisense 
oligonucleotide that is targeted to the liver following 
intravenous injection, where it effectively inhibits miR-
122, thereby playing a positive role in the regulation 
of hepatitis C viral replication.31 This oligonucleotide 
has already passed through Phase II clinical trials with 
promising results in patients with HCV infection.32  In 
the field of respiratory medicine, attempts are underway 
to develop a let-7 mimetic-based therapeutic agent for 
lung cancer; however, this candidate is currently still at 
the pre-clinical trial stage.33,34

The application of miRNA-based therapeutics is 
limited by several challenges related to mode of delivery, 
stability, and tissue specificity of the therapeutic 
agent.35 As the lung is accessible to therapeutic agents 
via the intrapulmonary route, aerosolization is a strategy 
for enhancing drug delivery and reducing side effects.  
Free miRNAs are rapidly degraded by nucleases in 
serum and extracellular fluids. Chemical modification at 
specific positions or formulation with delivery vectors 
have been shown to improve stability; however, these 
strategies may attenuate the suppressive activity of 

the oligonucleotides.36  Fujita et al recently developed 
a novel platform to enable naked RNA-interference 
approaches involving administration via inhalation 
in mice, without the need for sophisticated delivery 
technology.37 Additionally, anti-miRNA therapy 
utilizing chemically modified anti-miR oligonucleotides 
is reported to show potential as a therapy for lung 
disease, as the oligonucleotides can be successfully 
delivered without the requirement of delivery vectors.38  
More recently, growing evidence suggests that EVs such 
as exosomes and microvesicles play pathogenetic roles 
in various lung diseases.39  EVs, which are released from 
respiratory cells and immune cells, encapsulate various 
molecules including proteins and miRNAs and act as 
modulators of intercellular communication.  Recent 
evidence indicates that the various respiratory cell-
derived EVs play a key role for maintaining physiological 
homeostasis.  Ismail et al reported that miR-223 
contained in macrophage-derived EVs was transported 
to target cells, including monocytes, endothelial cells, 
epithelial cells and fibroblasts, resulting in cellular 
effects.40 In addition, Kulshreshtha et al reported that 
epithelial cell-derived EVs can enhance proliferation and 
chemotaxis of macrophages under the influence of IL-
13.41 In addition to their possible roles in pathogenesis, 
EVs may have therapeutic potential and show promise 
for use as biomarkers for lung diseases.42 Currently, 
circulating endothelial cell-derived EVs have shown 
promise as novel biomarkers that relate to the degree 
of lung endothelial injury in COPD.43 Gordon et al have 
reported that circulating endothelial cell-derived EVs 
are increased in smokers compared with non-smokers.44  
Takahashi et al showed that the elevation of a specific 
fraction of endothelial cell-derived EVs are collated 
with the decline of annual forced expiratory volume in 
1 second through a prospective study of stable COPD 
patients.45

Beyond MicroRNAs–lncRNAs in Lung 
Disease 

Besides miRNAs, lncRNAs are also receiving attention 
as regulators of gene expression.  LncRNAs are non-
protein coding transcripts longer than 200 nucleotides.  
In general, lncRNAs lack strong conservation across 
species, in contrast to many small RNAs such as 
miRNAs, and were originally classified as non-
functional.46  The biological function of most lncRNAs 
remains unknown, however growing evidence suggests 
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that lncRNAs play complex roles in gene regulation47 
and that some lncRNAs contribute to the development 
of neoplasms including lung cancer.48,49 Recently, Thai 
et al have characterized a novel lncRNA, the smoke and 
cancer-associated lncRNA-1 (SCAL1) that is induced by 
cigarette smoke and elevated in lung cancer cell lines.50 
They also revealed that SCAL1 may act downstream 
of nuclear factor erythroid 2-related factor (NRF2) to 
regulate gene expression and protect against oxidative 
stress.  NRF2 has been reported to play an important 
role in the development of smoke-induced emphysema: 
NRF2 knockout mice are extremely susceptible to 
cigarette smoke-induced emphysema.51  SCAL1, 
therefore, may contribute to the pathogenesis of COPD 
and may be a novel therapeutic target controlling 
oxidative stress induced by cigarette smoke exposure.

Conclusion 
Emerging evidence suggests that miRNA-based 
approaches provide a promising therapeutic strategy 
for lung diseases.  Since miRNAs can target multiple 
genes leading to a fine-tuned coordinated regulation 
of complex biological processes, miRNA-based 
therapeutics are believed to have great potential for 
pathologically complex diseases including COPD.  
Moreover, the lung is accessible to therapeutic agents 
via the intrapulmonary route and aerosolization may 
be useful for enhancing miRNA delivery and reducing 
side effects.  While additional research will be needed 
to address the technical obstacles that need to be 
overcome in order to use miRNAs clinically, advances 
in nanotechnology and chemistry of RNA analogues are 
expected to enable the development of miRNA-based 
therapeutics for the treatment of various lung diseases.
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