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Full description of Methods 
Data Cleaning: The CASCADE data contained measurements of 14 biomarkers, IL-1, IL-2, IL-

4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IFN, GMCSF, TNF, and CRP, measured on 302 

individuals at baseline, year 1, and year 2. Biomarkers at each timepoint were transformed 

using a log(1+x) transformation. After transformation, all biomarkers were centered and scaled 

to mean 0, standard deviation 1.  

 

Statistical Analysis: We sought to identify biomarkers at baseline associated with a change in 

seven outcomes: forced expiratory volume in 1-second (FEV1), total distance walked, average 

step total, average minutes active, grip strength, and percentage of time spent inactive. We 

collectively refer to total distance walked, average step total, average minutes active, grip 

strength, and percentage of time spent inactive as our activity outcomes.  

 

We measured change as both a raw difference between baseline and year 2, i.e., 

 

𝐹𝐹𝐹𝐹𝐹𝐹1𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2 − 𝐹𝐹𝐹𝐹𝐹𝐹1𝑏𝑏𝑦𝑦𝑏𝑏𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦, 

 

and as the proportional change from baseline to year 2, i.e., 

 

�𝐹𝐹𝐹𝐹𝐹𝐹1𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 2 − 𝐹𝐹𝐹𝐹𝐹𝐹1𝑏𝑏𝑦𝑦𝑏𝑏𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦� 𝐹𝐹𝐹𝐹𝐹𝐹1𝑏𝑏𝑦𝑦𝑏𝑏𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑦𝑦⁄ . 

 
We calculated the Pearson correlation between each baseline biomarker and change in each 

outcome (raw and percent change) and tested the null hypothesis that this correlation is equal 

to 0. To control the overall false discovery rate (OFDR) (Benjamini & Heller, 2008) across the 

biomarkers, we used a hierarchical hypothesis testing procedure to test the significance of the 

correlation between each biomarker and each outcome, as described in Li & Ghosh (2014). We 

treated each biomarker as a “set” of hypotheses in which 14 hypotheses (raw and percent 

change in seven outcomes) were tested. By controlling the OFDR, we control the expected 

number of biomarker sets falsely rejected. The steps to our hierarchical hypothesis testing 

procedure were as follows: 

 

1. Treat each biomarker as a group or set of null hypotheses. These null hypotheses are 

that a given biomarker is not correlated with raw change or percentage change in the 



 

seven outcomes. We index each of the 𝑞𝑞 = 14 hypotheses within a set using 𝑗𝑗, 𝑗𝑗 =

1, … , 14. 

 

Using Procedure 4 defined in (Li & Ghosh, 2014), first test the screening hypothesis for 

each biomarker, which is whether each biomarker is significantly associated with any 

outcome. To do this test, calculate the p-value for the association between biomarker 

𝑖𝑖, 𝑖𝑖 = 1, … , 14 with each of the outcomes. Then obtain the screening p-values, 𝑝𝑝(0)(𝑖𝑖), by 

calculating min
1≤𝑗𝑗≤𝑞𝑞

�(𝑞𝑞 + 1 − 𝑗𝑗)𝑝𝑝(𝑗𝑗)(𝑖𝑖)� where 𝑝𝑝(𝑗𝑗)(𝑖𝑖) is the p-value corresponding to 

hypothesis j for biomarker set i.  
2. Apply the Benjamini-Hochberg FDR correction (Benjamini & Hochberg, 1995) to the 

screening p-values, 𝑝𝑝(0)(1), … ,𝑝𝑝(0)(14). Let 𝑅𝑅 be the number of rejected screening 

hypotheses at the 0.05 level. 

3. For biomarker 𝑖𝑖, define 𝑅𝑅𝑏𝑏 = max{ 1 ≤ 𝑗𝑗 ≤ 𝑞𝑞: 𝑝𝑝(𝑗𝑗)(𝑖𝑖) ≤ 𝑅𝑅α�𝑚𝑚(𝑞𝑞 + 1 − 𝑗𝑗)�−1} or 𝑅𝑅𝑏𝑏 = 0 if 

the maximum does not exist.  

4. For every 𝑖𝑖 and 𝑗𝑗 such that 𝑝𝑝(𝑗𝑗)(𝑖𝑖) ≤ 𝑝𝑝(𝑅𝑅𝑖𝑖)(𝑖𝑖), reject the corresponding null hypothesis for 

outcome j in biomarker set i.  

 

We report if we can reject any hypotheses within a biomarker set and if so, which hypotheses 

within that set that were rejected.  

 

We also tested if baseline biomarkers can predict if an individual experienced a rapid decline in 

FEV1 from baseline to year 2 using Fisher’s linear discriminant analysis (LDA). We defined rapid 

decline in FEV1 as an average drop of 40 milliliters in FEV1 from baseline to year 1 and year 1 to 

year 2. We used 10-fold cross validation where we trained the LDA model on 9 out of 10 training 

folds and predicted rapid decline in FEV1 on the held-out test fold. We used the area under the 

receiver operating curve (AUROC) to evaluate the predictive performance. We used a 

permutation testing framework to assess the significance of this AUROC in which we permuted 

whether each individual experienced a rapid decline in FEV1 across the sample. We then fit the 

LDA model to predict rapid decline in FEV1 on the permuted samples using 10-fold cross 

validation. We repeated this 100 times and calculated the permutation p-value as: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑃𝑃𝑃𝑃 𝑃𝑃 − 𝐹𝐹𝑃𝑃𝑉𝑉𝑃𝑃𝑃𝑃 =  
�∑ 1(𝐴𝐴𝐴𝐴𝐶𝐶𝑏𝑏

𝑝𝑝𝑦𝑦𝑦𝑦𝑝𝑝 > 𝐴𝐴𝐴𝐴𝐶𝐶𝑡𝑡𝑦𝑦𝑡𝑡𝑦𝑦)100
𝑏𝑏=1 �+ 1
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Samples were required to have at least two consecutive FEV1 measurements (baseline and 

year 1 and/or year 1 and year 2) to be included in this analysis. Samples missing any baseline 

biomarker measurements were not included.  

 

Lastly, we used a linear mixed modeling analysis to investigate the relationship between 

baseline biomarkers over time and eight outcomes: FEV1, FEV1-percent-predicted (FEV1pp), 

total distance walked, average step total, average minutes active, grip strength, and percentage 

of time spent inactive. We considered baseline biomarker, time, and smoking status at each 

year of follow-up as fixed effects. We also adjusted for FEV1 in the models for total distance 

walked, average step total, average minutes active, grip strength, and percentage of time spent 

inactive. We included an interaction between baseline biomarker and time to capture any 

change over time of the baseline biomarker’s effect on the outcome. We included a random 

intercept, 𝑏𝑏0𝑏𝑏, for each subject 𝑖𝑖 to account for subject-specific variation in the observations. The 

model for FEV1 and FEV1pp at time 𝑃𝑃, 𝑃𝑃 = 𝑏𝑏𝑃𝑃𝑏𝑏𝑃𝑃𝑉𝑉𝑖𝑖𝑃𝑃𝑃𝑃,𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 1,𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 2 was as follows: 

 

𝑦𝑦𝑏𝑏𝑡𝑡 = β0 + β1𝑏𝑏𝑖𝑖𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏0 + β21(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 1) + 𝛽𝛽31(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 2) + β41(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 1) ∗ 𝑏𝑏𝑖𝑖𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏0
+ 𝛽𝛽51(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 2) ∗ 𝑏𝑏𝑖𝑖𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏0 + β6𝑏𝑏𝑚𝑚𝑃𝑃𝑏𝑏𝑖𝑖𝑃𝑃𝑠𝑠 𝑏𝑏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑡𝑡 + 𝑏𝑏𝑏𝑏0 + ϵ𝑏𝑏𝑡𝑡 

 

where 1(⋅) represents an indicator function.  

 

The model for our activity outcomes at time 𝑃𝑃, 𝑃𝑃 = 𝑏𝑏𝑃𝑃𝑏𝑏𝑃𝑃𝑉𝑉𝑖𝑖𝑃𝑃𝑃𝑃,𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 1,𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 2 was as follows: 

 

𝑦𝑦𝑏𝑏𝑡𝑡 = β0 + β1𝑏𝑏𝑖𝑖𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏0 + β21(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 1) +  𝛽𝛽3(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 2) + β41(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 1) ∗ 𝑏𝑏𝑖𝑖𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏0
+  𝛽𝛽51(𝑃𝑃 = 𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃 2) ∗ 𝑏𝑏𝑖𝑖𝑃𝑃𝑚𝑚𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑃𝑃𝑏𝑏0 + β6𝑏𝑏𝑚𝑚𝑃𝑃𝑏𝑏𝑖𝑖𝑃𝑃𝑠𝑠 𝑏𝑏𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑡𝑡 + β7𝐹𝐹𝐹𝐹𝐹𝐹1𝑏𝑏𝑡𝑡  + 𝑏𝑏𝑏𝑏0 + ϵ𝑏𝑏𝑡𝑡 

 

We were interested in the significance of the baseline biomarker effect on the outcome. We 

applied an analogous hierarchical hypothesis testing framework for each biomarker to assess 

significance, where each biomarker was treated as a set. The null hypotheses within each set 

were that each baseline biomarker has no effect on the seven outcomes considered in our 

analysis.  

 
 
 
 



 

Supplementary Table 1: Mean annual changes in outcomes for all participants (Total) and 

stratified by rapid FEV1 decline.  

 
Characteristic Total 

(n=302) 
Rapid FEV1 decline* 

(n=122) 
No rapid FEV1 

decline* 
(n=131) 

FEV1 -32.8 (141) -137 (98.9) 64.5 (98.4) 
Average minutes active -9.23 (43.0) -14.3 (46.0) -3.84 (38.6) 

Average steps total -335 (1310) -474 (1540) -172 (1020) 
6-minute walk total 
distance (ft) -16.1 (164) -52.7 (147) 17.6 (171) 

% time spent inactive 1.75 (4.40) 2.34 (4.66) 1.17 (4.00) 
Grip strength (kg) -1.25 (3.06) -1.14 (2.57) -1.37 (3.45) 

* Rapid FEV1 decline was defined as an average annual drop of 40 mL or higher. Forty-nine samples were missing 
two consecutive (baseline and year 1 or year 1 and year 2) measurements of FEV1.   
FEV1, forced expiratory volume in 1-second 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplementary Figure 1: Scatterplots of associations between baseline CRP and total 
distance walked (first row), average minutes active (second row), average steps total 
(3rd row), and average percent time spent inactive (fourth row). Associations between 
baseline CRP and activity outcomes are shown at baseline (first column), year 1 
(second column), and year 2 (3rd column).  
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