## **Online Supplement**

## **Original Research**

## Improving the Likelihood of Identifying Alpha-1 Antitrypsin Deficiency Among Patients With COPD: A Novel Predictive Model Using Real-world Data

Daniel N. Pfeffer, PhD<sup>1</sup> Rahul Dhakne, MS<sup>2</sup> Omnya El Massad, MSc<sup>1</sup> Pulkit Sehgal, BS<sup>2</sup> Thomas Ardiles, MD<sup>3</sup> Michael O. Calloway, PhD<sup>4</sup> M. Chris Runken, PharmD<sup>4</sup> Charlie Strange, MD<sup>5,6</sup>

<sup>1</sup>Data & Analytics, EVERSANA, Milwaukee, Wisconsin, United States

<sup>2</sup>Data & Analytics, EVERSANA, Pune, India

<sup>3</sup>Medical Affairs, Grifols Shared Services North America, Durham, North Carolina, United States

<sup>4</sup>Global Health Economics and Outcomes Research/Real-Wold Evidence, Grifols Shared Services North America, Durham, North Carolina, United States

<sup>5</sup>Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina, United States

<sup>6</sup>AlphaNet, Coral Gables, Florida, United States

## Supplementary Figure 1: Select List of Important Laboratory Features Included in the Predictive Model



**Normalized Grouped Feature Importance<sup>a</sup>** 

<sup>a</sup> Feature importance is based on the average information gain for a given feature weighted by the total importance of all included features. Feature importance was grouped at the component level for laboratory test results, instead of the laboratory test component and resulting tertile scoring used in the model.



Supplementary Figure 2: Model Evaluation in the Testing Group