Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation

COPD FOUNDATION

Clinical Review

Systematic Review of the Association Between Laboratory- and Field-Based Exercise Tests and Lung Function in Patients with Chronic Obstructive Pulmonary Disease

Martin Bell, PhD¹ Iain Fotheringham, BA¹ Yogesh Suresh Punekar, PhD² John H. Riley, BSc³ Sarah Cockle, PhD² Sally J. Singh, PhD³

Abstract

Introduction: Typical symptoms of chronic obstructive pulmonary disease (COPD) include breathlessness and reduced exercise capacity. Several laboratory- and field-based exercise tests are used to assess the exercise capacity of patients with COPD. It is unclear whether these exercise tests reflect the spirometric measures recommended for diagnosis of COPD. We therefore aimed to systematically assess the correlation between these exercise tests and common measures of lung function.

Methods: A search of $Embase^{M}$, $MEDLINE^{\circ}$ and The Cochrane Library identified primary publications in English that reported data on the correlations (Pearson's r or Spearman's rho) between the outcomes of exercise tests and the physiological measures of interest: forced expiratory volume in 1 second (FEV₁), forced vital capacity, inspiratory capacity and arterial oxygen saturation. We included studies reporting on the following exercise tests: 6- and 12-minute walk tests (6MWT and 12MWT), incremental and endurance shuttle walk tests, incremental and endurance cycle ergometer tests, and treadmill tests.

Results: Of 1781 articles screened, 45 were ultimately deemed eligible for inclusion in this review. The most commonly reported lung function variable was FEV_1 (reported by 39 studies); the most commonly reported exercise test was the 6-minute walk test (reported by 24 studies). FEV_1 appears to correlate moderately-to-strongly with 6MWT and 12MWT; and moderately-to-very strongly with incremental cycle ergometer tests (ICET); evidence for other exercise tests was limited.

Conclusion: There is evidence that 6MWT, 12MWT and ICET correlate with FEV₁ to some degree; evidence for associations of other exercise tests with measures of lung function in patients with COPD is limited. Clinicians must consider this when deciding to use these tests. Further comparisons of these tests must be made in order to assess which physiological and hemodynamic characteristics they reflect in patients with COPD.

Abbreviations: chronic obstructive pulmonary disease, COPD; forced expiratory volume in 1 second, FEV₁; 6-minute walk test, **6MWT**; 12-minute walk test, **12MWT**; incremental cycle ergometer test, **ICET**; Global initiative for chronic Obstructive Lung Disease, **GOLD**; American Thoracic Society, **ATS**; incremental shuttle walk test, **ISWT**; endurance shuttle walk test, **ESWT**; endurance cycle ergometer test, **ECET**; treadmill test, **TT**; forced vital capacity, **FVC**; inspiratory capacity, **IC**; partial pressure of arterial oxygen, **PaO**₂; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, **PRISMA**; body mass index, **BMI**; arterial oxygen saturation (pulse oximetry), **SaO**₂; liters, **L**; functional residual capacity, **FRC**; total lung capacity, **TLC**; residual volume, **RV**; arterial oxygen saturation, **SpO**₂; oxygen consumption, **VO**₂; heart rate, **HR**; health-related quality of life, **HRQoL**; BMI, airflow Obstruction, Dyspnea & Exercise Capacity index, **BODE**; highest volume of oxygen consumption achieved, **peak VO**₂; highest workload achieved, **W**_{max}; National Institute for Health Research, **NIHR**; Collaboration for Leadership in Applied Health Research and Care East Midlands, **CLAHRC EM**; National Health Service, **NHS**; British Thoracic Society, **BTS**; European Respiratory Society, **ERS**; interquartile range, **IQR**; inspiratory slow vital capacity, **IVC**; kilopascal, **kPa**; Medical Research Council, **MRC**; maximal voluntary ventilation, **MVV**; not reported, **NR**; partial pressure of arterial carbon dioxide, **PaCO**₂; respiratory exchange ratio, **RE**; standard deviation, **SD**; vital capacity, **VC**; correlation, **Corr**; studies reporting no significant correlation, **NS**; Spearman's rank coefficient, **ρ**; Pearson's regression coefficient, **r**

Funding Support: The study was funded by GlaxoSmithKline, Uxbridge, United Kingdom

Date of Acceptance: March 20, 2015

Citation: Bell M, Fotheringham I, Punekar YS, Riley JH, Cockle S. Singh SJ. Systematic review of the association between laboratory- and field-based exercise tests and lung function in patients with chronic obstructive pulmonary disease. *Chronic Obstr Pulm Dis (Miami)*. 2015; 2(4): 321-342. doi: http://dx.doi.org/10.12356/jcopdf. 2.4.2014.0157.

This article has an online supplement

- 1 Value Demonstration Practice, Oxford PharmaGenesis Ltd, Oxford, United Kingdom
- 2 Value Evidence & Outcomes, GlaxoSmithKline, Brentford, United Kingdon
- 3 Global Clinical Development and Respiratory R&D, GlaxoSmithKline, Uxbridge, United Kingdom
- 4 Centre for Exercise and Rehabilitation Science, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom

Address correspondence to:

Yogesh Suresh Punekar, PhD GlaxoSmithKline, Brentford, United Kingdom yogesh.q.punekar@gsk.com

Keywords:

chronic obstructive pulmonary disease; COPD; systematic review; forced expiratory volume in 1 second; FEV₁; exercise capacity

Introduction

Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide and its global prevalence is projected to increase.¹⁻³ COPD is characterized by breathlessness, episodes of exacerbations and reduced exercise capacity.⁴ COPD can lead to a progressive loss of daily activities and increased sedentary behavior, further exacerbating exercise capacity impairment.^{5,6} Even in patients with mild COPD, physical activity⁷ and exercise performance⁸ are compromised, and exercise tolerance is increasingly attenuated with disease progression.⁷ The mechanisms underlying reduced exercise capacity in patients with COPD are varied, but include increased metabolic costs of breathing⁹; deficits in gas exchange and ventilatory mechanics⁶; and peripheral muscle dysfunction.^{8,10}

Spirometry is recommended by the Global initiative for chronic Obstructive Lung Disease (GOLD) for the diagnosis of COPD.⁴ However, spirometry alone is a poor predictor of disability and quality of life in patients with COPD^{11,12} and correlates only weakly with dyspnea and health status.^{12,13,14} In contrast, exercise test outcomes have been shown to have good prognostic capabilities in patients with COPD.¹⁵⁻²¹ Guidelines published by the National Institute for Clinical Excellence and the American Thoracic Society (ATS)/European Respiratory Society on the diagnosis and treatment of COPD now indicate that prognosis and assessment of disease severity is improved by using functional criteria such as exercise capacity.^{22,23} Furthermore, the European Medicines Agency also supports the assertion that exercise testing in the clinical setting is a useful tool in COPD prognosis and monitoring the effectiveness of therapeutic intervention.²⁴

Several test modalities are available for the assessment of exercise capacity in patients with limited exercise tolerance; the most common include the 6- and 12-minute walk tests (6MWT and 12MWT), the incremental and endurance shuttle walk tests (ISWT and ESWT), incremental and endurance cycle ergometer tests (ICET and ECET), and incremental treadmill tests (TT) and all are well established for clinical use in areas such as cardiovascular disease.²⁵ However, it is currently unknown which of these tests best represents the physiological constraints of the disease. The relationship between exercise test performance and the spirometric measurement forced expiratory volume in 1 second $(FEV_1)^{26,27,28}$ has been established,²⁹ however, other key parameters such as forced vital capacity $(FVC)^{30}$ and inspiratory capacity (IC),^{31,32} as well as downstream manifestations of impaired lung function such as reduced partial pressure of arterial oxygen (PaO₂),³³ have not.

This systematic review was conducted to assess the correlation between the main outcomes of exercise tests and the most commonly reported physiological and systemic measures of impaired lung function (FEV₁, FVC, IC and PaO₂) in patients with COPD.

Methods

Search Strategy

Literature searches were conducted using Ovid® (Ovid Technologies Inc., New York, New York), incorporating Ovid MEDLINE® (U.S. National Library of Medicine, Bethesda, Maryland) for the period from 1948 to January 22, 2013, Ovid Embase[™] (Elsevier Inc., Philadelphia, Pennsylvania) from 1974 to January 22, 2013, and The Cochrane Library (John Wiley & Sons Ltd, Hoboken, New Jersey) from 1962 to January 22, 2013. Search strings were constructed to identify studies reporting primary data on the outcomes of the following exercise tests in patients with COPD (including emphysema- and bronchitis-specific studies): 6MWT, 12MWT, ISWT, ESWT, ICET, ECET and TT. The full search strings used have been published previously.³⁴ An example Embase search string is given in the online supplement Figure S1.

Study Selection

Study selection followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines for performing a systematic literature review.³⁵ One researcher screened each reference for inclusion based on title and abstract, and a second researcher performed a full quality-control check. A third researcher resolved any disputes. All publications that met entry criteria for the review were obtained as full articles and reassessed against the review criteria. Data from the selected studies were subsequently used to populate predefined summary tables. All data were fully checked by a second analyst. The review criteria are shown in Table 1. Publications were initially screened based on titles and abstracts, and full articles were reviewed when their relevance was unclear from the abstract. Publications were excluded if they were review articles, were not in English, studied patients with confounding comorbidities (e.g., cancers or diabetes), were unclear on the precise variables used for regression analysis or examined an inappropriate intervention (e.g., non-bronchodilatory pharmacotherapy or homeopathy). Studies were subsequently included for assessment only if they reported data on the correlations (Pearson's r [r]and/or Spearman's rho $[\rho]$) between the outcomes of any of the pre-specified exercise tests and the physiological measures of interest: FEV₁, FVC, IC and PaO₂.

Table 1. Summary of Systematic Review Inclusion/Exclusion Criteria

	Inclusion	Exclusion
Patient Population	Adult patients with COPD	 Pediatric populations Patients with suspected/non-confirmed COPD Animal/<i>in vitro</i> studies Patients with significant compounding comorbidities (e.g., cancer or diabetes)
Interventions	All forms of approved bronchodilatory pharmacotherapy or no active therapy	Unapproved or experimental therapy (e.g., homeopathy)
Outcomes	Correlation (Pearson's r $[r]$ and/or Spearman's rho $[\rho]$) between 1 of the following: • 6MWT • 12MWT • ISWT • ESWT • ICET • ECET • TT AND one of the following: • FEV ₁ • FVC • IC • PaO ₂	 Interventional outcomes Multivariate analysis results Other forms of correlation (including partial correlation analyses)
Study Design	Prospective or retrospective clinical trial or observational study	Reviews/editorials
Publication	English language	Non-English language

COPD=chronic obstructive pulmonary disease; ECET=endurance cycle ergometer test; ESWT=endurance shuttle walk test; FEV₁=forced expiratory volume in 1 second; FVC=forced vital capacity; IC=inspiratory capacity; ICET=incremental cycle ergometer test; ISWT=incremental shuttle walk test; 6MWT=6-minute walk test; 12MWT=12 minute walk test; PaO₂=partial pressure of arterial oxygen; TT=treadmill test.

Data Abstraction

Data were primarily abstracted by a single author (M.B.) and reviewed by all co-authors. A randomly generated selection of 30% of all articles was reviewed by a second author (I.F.) for quality control purposes. Extracted study characteristics were: 1)Study objectives (prospective/ retrospective); 2)Study inclusion/exclusion criteria; 3)Study population size; 4)Population baseline characteristics (age, gender, body mass index [BMI], disease severity [staging method and score] and pulmonary function); 5)Methodological information (ECM [protocol, period] and univariant analysis); 6)Results: Pre-test physiological measures, PaO₂, arterial oxygen saturation (SaO₂) (%), FEV₁ (%), FVC (%), FEV₁ (L), FVC (L), IC (L), IC (% pred), functional residual capacity [FRC](%pred), total lung capacity (TLC) (L), TLC (% pred), residual volume in liters (RV) (L), RV (% pred), IC/TLC (%), measure of strength, strength, measure of physical activity, physical activity; 7) Results: Peak physiological measures during test, arterial oxygen saturation (SpO₂), oxygen consumption (VO₂), VO₂/kg, heart rate (HR); 8) Results: Patient reported outcomes, exertion (Borg scale), measure of dyspnea, dyspnea, measure of health-related quality of life (HRQoL), HRQoL; 9) Results: demographics, age, sex, height, weight, BMI; 10) Multivariate analyses to explain variance in ECM (parameters, analysis, r^2); 11) Discussion (conclusions, limitation, comment).

The following outcomes of exercise tests were recorded: distance or stages achieved for the 6MWT, 12MWT, ISWT; duration of exercise for the ESWT and ECET; and the highest recorded volume of oxygen consumption (peak VO₂) and maximum workload (W_{max}) for the TT and ICET. Publications involving studies assessing multivariate regressions were not included owing to the multifactorial nature of the statistical approach and the unsuitability of the output for aggregation.

Statistical Analysis

Pearson's and Spearman's correlations between lung function test results and the most commonly reported exercise test outcomes are presented. Pearson's correlations are often used to describe the linear association between 2 variables when comparing continuous variable data. Spearman's correlations are commonly used to describe the linear association between 2 sets of ranked (ordinal) data. Correlations are presented as the range of significant values reported in the study publications reviewed. Only those correlations deemed to have achieved significance by the authors of the original articles were included in our descriptive data analysis (i.e., p<0.05). However, all correlation statistics generated, regardless of significance were extracted (when available, many studies did not provide r values for non-significant correlations). The strength of (significant) correlations is classified according to *British Medical Journal* guidelines, which regard significant correlation coefficients of 0.0–0.19 as very weak, 0.20–0.39 as weak, 0.40–0.59 as moderate, 0.60–0.79 as strong and 0.80–1.00 as very strong correlations.

Inclusion/Exclusion Criteria

Owing to a lack of high quality evidence for associations between these tests and our stated measures of lung function, we included observational studies in our final analysis in addition to randomized controlled trials. Within the results of this search, we reviewed articles to identify those presenting Pearson's and Spearman's correlations between FEV₁, FVC, IC and PaO₂, and the most commonly reported exercise test outcomes (described above). Studies reporting lung function variables only as a percentage of age-, sex- and BMIpredicted values were excluded from these results. Publications involving studies assessing multivariate regressions were not included owing to the multifactorial nature of the statistical approach and the unsuitability of the output for aggregation.

Results

Overview of Identified Studies

The PRISMA-compliant search methodology used to identify relevant articles is summarized in Figure 1. Of 1781 articles screened, 45 studies were ultimately deemed eligible for inclusion in this review. Table 2 provides a summary of included studies.

Correlations Between Exercise Test Outcomes and FEV₁

A total of 39 studies $^{16,36-65,66-71,72,73}$ reported significant Pearson's correlations between an exercise test outcome and baseline FEV₁ (Table 3). The ranges of correlations reported by studies are presented in Figure 2.

FEV1 and 6MWT

The most commonly reported test was the 6MWT; of 17 studies ^{16,36,37,39-41,43,44,46,47,52,54,56,62,65,66,72}

Figure 1. PRISMA-compliant Screening and Identification Process

FEV₁=forced expiratory volume in 1 second; FVC=forced vital capacity; IC=inspiratory capacity; PaO₂=partial pressure of arterial oxygen

assessing Pearson's correlations, 12 studies^{16,36,39-41,43,47,52,62,65,66,72} showed significant correlations (weak to strong; *r*=0.23–0.62) and 5 reported no statistically significant Pearson's correlation between the 6MWT and FEV₁.^{37,44,46,54,56} Additionally, 2 studies ^{42,63} out of 3 studies^{42,63,73} assessing Spearman's correlations between FEV₁ and 6MWT reported significant correlations (moderate; ρ =0.41–0.44), with the remaining study⁷³ reporting no correlation.

$\ensuremath{\mathsf{FEV}}\xspace_1$ and $12\ensuremath{\mathsf{MWT}}\xspace$

The 12MWT was also reported frequently, with 5 studies^{38,48,58,60,68} out of 8 studies^{38,48,58-61,64,68} reporting significant Pearson's correlations between distance achieved and baseline FEV₁ (very weak to strong; r=0.15–0.62); the remaining 3 studies reported no significant Pearson's correlations.^{59,61,64} One study reported significant correlations between ISWT and FEV₁ (weak to moderate; r=0.22–0.51).⁶⁹

$\ensuremath{\mathsf{FEV}}\xspace_1$ and $\ensuremath{\mathsf{ICET}}\xspace$

The strongest relationship between FEV₁ and exercise tests was in studies reporting ICET correlations; all 7 studies^{45,47,49,54,59,62,71} assessing Pearson's correlations between peak VO₂ achieved during ICET reported significant correlations (moderate to very strong; r=0.42-0.83); in 5 studies in which W_{max} was assessed as the ICET outcome, correlations were also significant (weak to very strong; r=0.34-0.81).^{41,55,57,71,72} These observations were supported by 1 further study, which reported positive Spearman's correlations for peak VO₂ and W_{max} during the ICET (p=0.37 and 0.55, respectively).⁶³

$\ensuremath{\mathsf{FEV}}\xspace_1$ and $\ensuremath{\mathsf{ISWT}}\xspace$ and $\ensuremath{\mathsf{TT}}\xspace$

Limited evidence was available for other test outcomes and baseline FEV₁; 1 study each reported significant Pearson's correlations between FEV₁ and ISWT (weak to moderate; r=0.22-0.51)⁶⁹ and TT (moderate; r=0.47, p<0.05)⁷⁰ (Table 3; Figure 2a).

Correlations Between Exercise Test Outcomes and FVC

Baseline FVC and exercise test outcomes were reported by 18 studies (Table 3; Figure 2b).^{38,39,41-46,49,50,53,58-62,70}

FVC and 6MWT

Again, the most commonly reported Pearson's correlations were between the 6MWT and FVC; 4 studies^{39,41,43,62} out of 6 studies^{39,41,43,44,46,62} assessing Pearson's correlations reported significant correlations (weak to moderate; r=0.32-0.59), with the remaining 2 studies^{44,46} reporting no significant Pearson's correlation. One further study reported a significant Spearman's correlation (moderate; $\rho=0.54$).⁴²

FVC and 12MWT

The 12MWT was also assessed frequently, with 4 studies $^{38,58-60}$ of 6 studies $^{38,58-61,64}$ reporting

Table 2. Summary of Included Studies

Author	Country	N	Inclusion & Exclusion Criteria	Age (years), Sex (n), BMI (kg/m²)	Pulmonary Function		
McGavin 1976 ⁵⁹	United Kingdom	35	 Inclusion = Patients with chronic bronchitis Exclusion = Not stated 	• Age = 40–70 • Male = 35, Female = 0 • BMI = Not stated	Chronic bronchitis according to MRC criteria	• FEV ₁ , L = 1.05 ± 0.58 • FVC, L = 2.84 ± 0.93	
Mungall 1979 ⁶¹	United Kingdom	13	 Inclusion = Patients with chronic bronchitis or radiological emphysema with no evidence of ischemic heart disease or other serious illness or reversible bronchoconstriction Exclusion = Not stated 	• Age = 55.4 (47–64 range) • Male = 13, Female = 0 • BMI = Not stated	Chronic bronchitis according to MRC criteria or radiological emphysema	[Individually listed in paper]	
O'Reilly 1982 ⁶⁴	United Kingdom	10	 Inclusion = Males with chronic airways obstruction Exclusion = Not stated 	• Age = 61 (52–70 range) • Male = 10, Female = 0 • BMI = Not stated	 Chronic bronchitis (n = 8) Radiological features of emphysema (n = 2) 	• FEV ₁ , L = 0.81 ± 0.21 • FVC, L = 2.560 ± 0.593	
Morgan 1983 ⁶⁰	United Kingdom	50	 Inclusion = Patients with chronic bronchitis from several respiratory clinics, not referred on account of disproportionate dyspnea, no history of psychiatric illness, and not taking antidepressant or anxiolytic drugs Exclusion = Patients with any other disorders that might limit exercise tolerance 	• Age = 60.5 ± 6.8 • Male = 38, Female = 12 • BMI = Not stated	Chronic bronchitis according to MRC criteria and with MRC grade 3–5 dyspnea	• FEV ₁ , L = 0.97 ± 0.6 • FVC, L = 2.59 ± 0.96	
Light 1985 ⁵⁸	United States	45	 Inclusion = Patients with COPD, FEV₁ 1.25 L, FEV₁/FVC < 50%, 40–70 years old, dyspnea-limited exercise tolerance Exclusion = Patients who had received tricyclic antidepressants or other major antipsychotic drugs in preceding 2 months or who had other significant complicating diseases such as uncontrolled malignancy, hepatic insufficiency, insulin-dependent diabetes mellitus, angina pectoris, myocardial infarction within previous year, cardiac arrhythmias, neuromuscular disease limiting ambulation, or blindness 	• Age = 62.4 ± 4.3 • Male = 45, Female = 0 • BMI = Not stated	"Moderate or severe COPD"	• FEV ₁ , L = 0.908 ± 0.262 • FEV ₁ , % predicted = 29.0 ± 9.0 • FVC, L = 2.500 ± 0.606 • FVC, % predicted = 62.0 ± 15.5	
Dekhuyzen 1986 ⁴⁸	Nether- lands	50	 Inclusion = Patients from outpatient department, age 40–65 years, suffering from emphysema and/or chronic bronchitis with chronic airflow obstruction, steady clinical condition for preceding 2 months, FEV₁ increased by < 20% after inhalation of salbutamol Exclusion = Patients with hypertension, ischemic heart disease, peripheral vascular disease or muscular disease 	• Age = 57.2 ± 7.3 • Male = 37, Female = 13 • BMI = Not stated	As per MRC criteria	• FEV ₁ , L = 1.463 ± 0.566 • IVC, L = 3.712 ± 1.059	

Chonan 1988 ⁷⁸	Japan	15	 Inclusion = Patients with clinically stable chronic emphysema and chronic bronchitis who had been observed in pulmonary clinic for > 1 year, had undergone repeated pulmonary function tests demonstrating chronic airway obstruction and lung hyperinflation, had no substantial changes in pulmonary function during preceding 6 months Exclusion = Not stated 	• Mean age = 63 ± 6.5 • Male = 15, Female = 0 • BMI = Not stated	Diagnoses consistent with ATS standards	• FEV ₁ , % predicted = 36.9 ± 13.6 • VC, % predicted = 74.6 ± 21.5
Chetty 1989 ⁴⁵	United States	37	 Inclusion = Patients with clinically stable COPD with no heart failure on clinical examination or symptomatic coronary artery disease Exclusion = Not stated 	• Age = 60 ± 6 • Male/Female = Not stated • BMI = Not stated	Moderate to severe COPD	• FEV ₁ , L = 1.49 ± 0.59 • FEV ₁ /FVC, % = 48 ± 12
Dillard 1989 ⁴⁹	United States	20	 Inclusion = Patients fulfilling the study definitions of chronic airflow obstruction and ventilatory limitation of exercise, the latter defined by: (1) Peak exercise cardiac frequency < 2 SD below predicted maximum, (2) dyspnea as exercise limiting symptom, (3) exercise ventilation > 80% of 12s MVV Exclusion = Patients who did not meet the definitions or who had a history of prior acute or chronic ventilatory failure or cardiac disease 	• Age = 56 ± 3 • Male = 20, Female = 0 • BMI = Not stated	Chronic airflow obstruction defined by: (1) FEV ₁ /FVC < 0.7 (2) TLC > 80% predicted (3) change in FEV ₁ < 15% after bronchodilation	• FEV ₁ , L = 1.72 ± 0.21 • FVC, L = 3.27 ± 0.26
Schols 1989 ⁶⁸	Nether- lands	83	 Inclusion = Patients with clinically stable severe COPD admitted to PR program Exclusion = Patients with cardiovascular, neurological, endocrine and locomotor diseases and those with PaO₂ < 7.3 kPa 	• Age = 62 ± 8 • Male = 71, Female = 12 • BMI = Not stated	Severe COPD	• FEV ₁ , L = 0.9 ± 0.3 • IVC, L = 2.7 ± 0.6
Singh 1992 ⁶⁹	United Kingdom	10	 Inclusion = Patients with COPD recruited from medical clinics Exclusion = Patients known to be hypoxic with cor pulmonale or ischemic heart disease, participants with neurological or locomotor disorders 	Groups A, B, C: • n = 10, 10, 15 • Age = 64 (54–73 range), 63 (52–74 range), 64 (45–71 range) Male = 9, 6, 10 • BMI = Not stated	NR	Groups A, B, C: • FEV ₁ , L = 0.50 (0.36–1.45 range), 1.10 (0.60–2.10 range), 1.20 (0.50–2.85 range)
Wakayama 1993 ⁷⁰	Japan	20	 Inclusion = Patients with clinically stable pulmonary emphysema who entered a PR program and free of other diseases, except for mild hypertension Exclusion = Patients receiving home oxygen therapy 	• Age = 66 ± 6 • Male/Female = Not stated • BMI = Not stated	Not stated	 FEV₁, L = 1.67 ± 0.50 FEV₁, % predicted = 52 ± 22 FVC, L = 2.62 ± 0.68 FVC, % predicted = 80 ± 19
Bernstein 1994 ³⁸	United States	9	 Inclusion = COPD patients with FEV₁ 1.4 L, FEV₁/FVC < 0.50, exercise limited by dyspnea, stable disease state, and of age 40–75 years Exclusion = Patients with known left ventricular disease or neuromuscular or other medical problems which would preclude them from walking for 12 min or performing cycle ergometry 	• Age = 67 ± 4 • Male = 9, Female = 0 • BMI = Not stated	"Average patient had moderate COPD" based on mean FEV ₁	• FVC, L = 3.40 ± 0.61 • FEV ₁ , L = 1.32 ± 0.28

Wijkstra 1994 ⁷²	Nether- lands	40	 Inclusion = Patients with known COPD with post-bronchodilator FEV₁ < 60% predicted and FEV₁/IVC < 50%, and clinically stable Exclusion = Patients with evidence of ischemic heart disease, intermittent claudication, musculoskeletal disorders, or other disabling diseases that might restrict a pulmonary rehabilitation program 	• Age = 62.4 ± 5.0 • Male/Female = Not stated • BMI = Not stated	Severe airways obstruction, based on pulmonary function indices	• FEV ₁ , L = 1.2 ± 0.3 • FEV ₁ , % predicted = 44.3 ± 10.6 • IVC, L = 3.6 ± 0.9 • IVC, % predicted = 91.3 ± 17.2	
Gosselink 1996 ⁵⁴	Belgium	41	 Inclusion = Patients with COPD attending the outpatient clinic for dyspnea and poor exercise tolerance with: FEV₁ between 20% and 60% of predicted value, clinically stable condition, < 75 years old, no recent cardiac complaints, and no other pathological conditions Exclusion = Not stated 	• Age = 58 ± 10 • Male = 32, Female = 9 • BMI = 23 ± 5	"Moderate to severe COPD"	• FEV ₁ , % predicted = 43 ± 19 • FVC, % predicted = 79 ± 21	
Baarends 1997 ⁸⁰	Nether- lands	62	 Inclusion = Patients with COPD admitted to pulmonary rehabilitation center in stable clinical condition, who were not suffering from respiratory tract infection or clinically visible signs of edema at the time of study, who did not require supplemental oxygen, and had no known cardiovascular, neurological, endocrine or locomotive diseases Exclusion = Patients with an increase in FEV₁ of > 10% baseline after inhalation of beta2-agonists 	• Age = 63 ± 9 • Male = 44, Female = 18 • BMI = 23.2 ± 4.8	Moderate to severe COPD, as per ATS definitions	• FEV ₁ , % predicted = 39 ± 13 • FVC, % predicted = 87 ± 16	
Borak 1998 ³⁹	Poland	49	 Inclusion = Patients with COPD diagnosis, based on history, clinical examination, lung function tests and chest radiography, in stable state, with no signs of respiratory infection or heart failure or any concomitant disease that could influence their exercise tolerance or their psychological status. They were treated with inhaled bronchodilators – ipratropium bromide, beta2-agonists and oral theophylline. Six patients were on domiciliary long-term oxygen therapy Exclusion = patients with asthma, > 10% improvement in FEV₁ and/or FVC after inhalation of beta2-agonists, and blood or sputum eosinophilia 	• Age = 58 ± 8 • Male = 38, Female = 11 • BMI = Not stated	"wide spectrum of airway limitation severity and hypoxemia"	• FVC, L = 2.6 ± 0.7 • FVC, % predicted = 60 ± 16 • FEV ₁ , L = 1.0 ± 0.5 • FEV ₁ , % predicted = 32 ± 14	
Revill 1999 ⁶⁷	United Kingdom	10	 Inclusion = Patients in Group A were recruited from outpatient respiratory clinics, patients in Groups B & C were recruited from waiting lists for pulmonary rehabilitation, all patients had COPD, FEV₁ < 60% predicted, and self-reported breathlessness due to exercise Exclusion = Not stated 	• Age = 63.7 ± 5.5 • Male = 9, Female = 1 • BMI = Not stated	COPD diagnosed according to BTS guidelines	• FEV ₁ , L = 1.01 ± 0.36 • FEV ₁ , % predicted = 35 ± 4 • FVC, L = 2.92 ± 0.55 • FVC, % predicted = 81 ± 20	

Yoshikawa 1999 ⁷¹	Japan	27	 Inclusion = Male patients with stable COPD, no other pathologic conditions and not receiving oral corticosteroids Exclusion = Not stated 	• Age = 68.4 ± 5.8 • Male = 27, Female = 0 • BMI = 18.4 ± 2.3	COPD as per ATS	 FEV₁, L = 1.18 ± 0.66 FEV₁, % predicted 49.8 ± 26.4 VC, L = 2.75 ± 0.83 VC, % predicted 84.0 ± 23.5
Rejeski 2000 ⁶⁶	United States	209	 Inclusion = Diagnosis of COPD, 55–80 years old, self-reported disability attributed to breathlessness when performing daily activities, prior or current history of smoking, FEV₁/FVC ratio ≤ 70% and FEV₁ > 20% of predicted. Exclusion = Not stated 	• Age = 67.2 ± 6.0 • Male = 117, Female = 92 • BMI = Not stated	n in ATS stage of COPD: • Stage I mild: 134 • Stage II moderate: 55 • Stage III severe: 20	• FEV ₁ , L = 1.57 ± 0.58 • FEV ₁ , % predicted = 57.10 ± 17.00
Chuang 2001 ⁴⁶	United States/ Taiwan	27	• Inclusion = Outpatients with clinically stable COPD, receiving a regular schedule of administered bronchodilators with or without oral prednisolone of < 10 mg/day, who had peak exercise heart rate $\ge 85\%$ of the maximally predicted, RER ≥ 1.09 at peak exercise, arterial plasma bicarbonate at peak exercise decreases from resting baseline level by at least 4 mmol/L, plasma pH value at peak exercise ≤ 7.35 • Exclusion = Patients with significant arrhythmia or having a history of malignancy, cardiovascular or peripheral vascular disease, or locomotion problems	• Age = 65 ± 6 • Male = 27, Female = 0 • BMI = Not stated	Moderate to severe COPD, based on most (~90%) patients having FEV ₁ /VC < 65%	• FEV ₁ , L = 1.2 ± 0.4 • FEV ₁ , % predicted = 49 ± 10 • VC, L = 2.8 ± 0.5
Dowson 2001 ⁵⁰	United Kingdom	29	 Inclusion = Patients with α1-antitrypsin deficiency and macroscopic emphysema selected consecutively from a treatment center Exclusion = Patients with asthma, bronchiectasis, liver disease or other medical problems likely to limit exercise or alter health status 	• Median age = 52 (IQR: 46–60) • Male = 19, Female = 10 • BMI = Not stated	Moderate to severe airflow obstruction	• Median FEV ₁ , L = 1.03 (IQR: 0.84–1.41) • Median FEV ₁ , % predicted = 35 • Median FEV ₁ / VC, L = 0.31 (IQR: 0.25–0.43) • Median FEV ₁ / VC, % predicted = 37
Fujita 2002 ⁵³	Japan	20	 Inclusion = Patients with chronic stable emphysema Exclusion = Not stated 	• Age = 66.9 ± 8.6 • Male = 18, Female = 2 • BMI = Not stated	Not stated	 FEV₁, L = 1.31 ± 0.61 FEV₁, % predicted = 44.4 ± 19.8 VC, L = 3.1 ± 0.8 VC, % predicted = 94.7 ± 17.8

Oga 2002 ⁶³	Japan	36	 Inclusion = Consecutive male patients with stable COPD from placebo arm of previously reported clinical trial with age > 45 years, smoking history > 20 pack years, chest radiographs showing hyperinflation, FEV₁ predicted < 80%, post-bronchodilator FEV₁/FVC < 0.7 Exclusion = Patients with exacerbations in preceding 3 months, history of asthma, other diseases likely to affect exercise, or hypoxemia at rest 	• Age = 69 ± 7 • Male = 36 Female = 0 • BMI = 20.3 ± 3.2	COPD as per ATS	• FEV ₁ , L = 1.07 ± 0.45 • FEV ₁ , % predicted = 40.3 ± 16.7
Carter 2003 ⁴³	United States	124	 Inclusion = Individuals with moderate to very severe COPD, capable of undergoing exercise testing to peak effort, greater than 8th grade education and able to read, no interfering coexisting medical conditions Exclusion = cardiac, renal or endocrine disease, claudication limiting exercise capacity, musculoskeletal pain, syncope, significant ST-T depression or cardiac arrhythmia on exercise testing, or a pattern for restrictive lung disease 	• Age = 66.8 ± 7.3 • Male = 90, Female = 34 • BMI = 27.1 ± 5.2	Moderate to severe airway obstruction as determined by pulmonary function indices	• FEV ₁ , L = 1.33 ± 0.43 • FEV ₁ , % predicted = 45.9 ± 12.5 • FVC, L = 3.25 ± 0.91 • FVC, % predicted = 82.9 ± 15.5
Hodgev 2003 ⁵⁶	Bulgaria	20	 Inclusion = Patients with clinically stable COPD who had not received systemic steroids at least 2 months prior to study, but did receive therapy with bronchodilators during study Exclusion = Patients with history of asthma, allergic rhinitis or atrophy; active lung tuberculosis or lung carcinoma; cardiovascular disorders including myocardial infarction, angina pectoris, pericarditis, valvular diseases (excepting relative tricuspid insufficiency), arrhythmia, arterial hypertension requiring drug treatment; disorders of locomotor apparatus; anemias; kidney, liver or metabolic disorders 	• Age = 55.9 ± 8.7 • Male = 20, Female = 0 • BMI = 27.8 ± 7.7	COPD diagnosed as per guidelines recommended by the National Consensus Conference	• FEV ₁ , L = 1.35 ± 0.72 • FEV ₁ , % predicted = 42 ± 19
Peruzza 2003 ⁶⁵	Italy	60	 Inclusion = Patients with COPD over the age of 65 years Exclusion = Patients who were underweight (BMI < 18.5 kg/m²) or obese (BMI > 30 kg/m²), had ischemic heart disease, or experienced changes in medication in preceding 30 days or hospital admission in preceding 6 weeks 	• Age = 74.5 ± 5.8 • Male = 60, Female = 0 • BMI = 25.1 ± 3.8	As per ERS criteria	• FEV ₁ , L = 1.1 ± 0.5 • FEV ₁ , % predicted = 48.1 ± 18.3
Vagaggini 2003 ⁷⁶	Italy	18	 Inclusion = Patients who were in the recovery phase of an exacerbation of COPD that had required hospitalization, had never performed a 6MWT or ISWT, were taking bronchodilators and/or inhaled corticosteroids at the time of study, and were examined at least 14 days after the beginning of the exacerbation Exclusion = Not stated 	• Age = 67 ± 8.2 • Male = 15, Female = 3 • BMI = Not stated	Moderate to severe COPD	• FEV ₁ , % predicted = 48 ± 14 • FVC, % predicted = 74.4 ± 16.2

Nakamura 2004 ⁶²	Japan	38	 Inclusion = Male patients with clinically stable COPD and FEV₁ < 70% predicted, age < 80 years, and no other pathological conditions Exclusion = Not stated 	• Age = 69.8 ± 6.7 • Male = 38, Female = 0 • BMI = 21.4 ± 3.1	"Moderate to severe COPD"	• FEV ₁ , L = 1.33 ± 0.55 • FEV ₁ , % predicted = 49.5 ± 19.6 • FVC, L = 2.79 ± 0.70
Pinto-Plata 2004 ¹⁶	United States	198	 Inclusion = Patients with COPD referred to hospital pulmonary department Exclusion = Patients who had had an exacerbation in preceding 4 months or another unstable medical problem 	• Age = 68 ± 9 • Male = 168, Female = 30 • BMI = 24.86 ± 5.74	COPD as per ATS	• FEV ₁ , L = 1.04 ± 0.39
Behnke 2005 ³⁷	Germany	88	 Inclusion = Individuals with COPD and FEV₁ ≤ 75% predicted and no other significant airway disease Exclusion = Not stated 	Training group (n = 66): • Age = 61.2 ± 8.6 • Male = 51, Female = 15 • BMI = 24.5 ± 3.0 Control group (n = 22): • Age = 58.4 ± 6.7 • Male = 20, Female = 2 • BMI = 23.8 ± 4.9	Mild to severe COPD diagnosis as per international guidelines (GOLD)	 Training group, control group: FEV₁, L = 1.30 ± 0.49, 1.45 ± 0.51 FEV₁, % predicted 41.9 ± 13.9, 46.9 ± 15.1
Rosa 2006 ⁷⁷	Brazil	24	 Inclusion = Consecutive patients with COPD from pulmonary rehabilitation center with: PaO₂ = 55 mmHg or SpO₂ = 92% (at rest and on room air), at least 6 weeks of clinical stability, and satisfactory ability to walk unaided. Exclusion = Patients with SpO₂ of 80% during exercise, suffering from other pulmonary diseases, heart diseases, cardiac insufficiency or other comorbidities considered uncontrolled or significant, and those presenting formal contraindications for performing exercise tests 	• Age = 67.8 ± 7.5 • Male = 17 Female = 7 • BMI = 24.2 ± 4.2	n in GOLD stage of COPD: • Stage I mild: 2 • Stage II moderate: 7 • Stage III severe: 12 • Stage IV: 3	• FEV ₁ , % predicted = 48.6 ± 21.0 • FVC, % predicted = 80.9 ± 21.0
Cote 2007 ⁴⁷	United States	365	 Inclusion = Consecutive patients with COPD recruited to the BODE protocol between 1994 and 2005, with smoking history > 10 pack years, FEV₁/FVC < 0.70, response to bronchodilation of 12% or 200 mL, clinically stable for preceding 6 weeks Exclusion = Not stated 	• Age = 67 ± 8 • Male/Female = "mostly men" • BMI = 26.8 ± 5.4	"Wide range of COPD severity"	• FEV ₁ , L = 1.2 ± 0.48 • FEV ₁ , % predicted = 40 ± 14 • FVC, L = 2.8 ± 0.79
Emtner 2007 ⁵¹	Sweden	21	 Inclusion = Consecutive patients who had been admitted to hospital with acute exacerbation of COPD; patients split into 2 groups for baseline parameters, but not for analyses Exclusion = Not stated 	No hospitalization group (n = 12): • Age = 65 ± 10 • Male = 2, Female = 10 • BMI = 23 ± 4 Hospitalization group (n = 9): • Age = 65 ± 9 • Male = 5, Female = 4 • BMI = 22 ± 4	Not stated	• FEV ₁ , % predicted = 40 ± 12, 32 ± 17

Brown 2008 ⁴¹	United States	1218	 Inclusion = COPD patients enrolled in National Emphysema Treatment Trial with radiographic evidence of emphysema, FEV₁ ≤ 45% predicted, TLC ≥ 100% predicted, RV ≥ 150% predicted and PaCO₂ ≤ 60 mmHg, who had not smoked in prior 4 months and did not have severe co-morbid conditions Exclusion = Not stated 	• Age = 66.6 ± 6.13 • Male = 746, Female = 472 • BMI = 24.7 ± 3.88	COPD patients with severe or very severe emphysema who were participating in a trial of lung volume reduction surgery	• FEV ₁ , L = 0.77 ± 0.24 • FEV ₁ , % predicted = 26.9 ± 7.12 • FVC, L = 2.50 ± 0.78 • FVC, % predicted = 66.8 ± 15.2
Hill 2008 ⁵⁵	Australia/ Canada	50	 Inclusion = Patients with diagnosis of COPD, smoking history > 10 pack years, and 15% < FEV₁ predicted < 70% Exclusion = History of lung surgery or spontaneous pneumothorax, use of gait aids or long-term oxygen therapy, any comorbid condition thought to adversely affect exercise performance (e.g., musculoskeletal conditions, symptomatic ischemic heart disease, neurologic or cognitive impairment), BMI > 35 kg/m², or tapering doses of corticosteroids or methylxanthines 	• Age = 68 ± 8 • Male = 36, Female = 14 • BMI = 23.4 ± 3.5	Not stated	• FEV ₁ , L = 1.0 ± 0.4 • FEV ₁ , % predicted = 37 ± 11 • FEV ₁ /FVC, % = 37 ± 9
Pitta 2008 ⁷⁹	Brazil	40	 Inclusion = Consecutive patients in screening process for PR program between June 2006 and June 2007 with clinically stable COPD, and no osteo-neuro- muscular comorbidities that might interfere with assessments Exclusion = Patients not able to finalize proposed assessments 	• Age = 68 ± 7 • Male = 21, Female = 19 • BMI = 24 ± 6	n in each GOLD stage of COPD: • Stage I mild: 1 • Stage II moderate: 11 • Stage III severe: 19 • Stage IV: 9	• FEV ₁ , L = 0.90 ± 0.26 • FEV ₁ , % predicted = 41 ± 14 • FVC, % predicted = 66 ± 19
Brasil Santos 2009 ⁴⁰	Brazil	91	 Inclusion = Patients with COPD as outpatients from pulmonary unit during 2004 whose records were chosen randomly and then filtered according to following exclusion criteria Exclusion = Patients enrolled in or who had taken part in a pulmonary rehabilitation program in preceding 6 months, or those with skeletal-muscular dysfunctions that prevented normal walking, orthopedic appliances and/or prostheses, hemodynamic instability with infection or acute episodes in preceding 8 weeks, or with prolonged oxygen therapy 	• Age = 64.4 ± 8.5 • Male/Female = Not stated • BMI = Not stated	COPD of all levels of obstruction as per GOLD guidelines	• FEV ₁ , % predicted = 63.4 ± 25.3 • FEV ₁ /FVC, % = 50.8 ± 12.4
Camargo 2010 ⁴²	Brazil	50	 Inclusion = Consecutive patients with symptomatic COPD (≥ 40 years old) treated between March 2008 and July 2009, with a documented post-bronchodilator FEV1 predicted ≤ 65% within last 12 months, and with a smoking history of ≥ 10 pack years Exclusion = Patients with dyspnea from any other cause than COPD, those using supplemental oxygen, those unable to perform the 6MWT, answer the dyspnea questionnaires or perform pulmonary function tests, those presenting with exacerbation in the last 3 months and those presenting radiological abnormalities indicative of other conditions 	• Age = 69 ± 8 • Male = 35, Female = 15 • BMI = 27 ± 5	Not stated	 FEV₁, L = 1.3 ± 0.4 FEV₁, predicted 52 ± 12 FVC, L = 2.7 ± 0.7 FVC, predicted 85 ± 14

Kozu 2010 ⁵⁷	Japan	45	 Inclusion = Patients with COPD who were clinically stable and had had no changes in medication for at least 4 weeks prior to the study Exclusion = Patients with very mild symptoms, or those who had comorbid conditions affecting exercise performance (e.g. muscloskeletal or neurological impairment, cardiac disease, severe cognitive impairment) 	• Age = 67.3 ± 5.1 • Male = 38, Female = 7 • BMI = 20.8 ± 2.2	Diagnosis of COPD was made according to established criteria (GOLD)	 FEV₁, L = 1.10 ± 0.50 FEV₁, predicted 45 ± 12 FVC, predicted 81 ± 22
Fujimoto 2011 ⁵²	Japan	130	 Inclusion = Consecutive middle-aged and elderly outpatients with COPD recruited between April 1997 and October 2009 Exclusion = Patients who had had exacerbation or uncontrolled comorbidities, such as malignancy, cardiovascular disease, cerebrovascular disease, and active musculoskeletal disease, during 6 weeks preceding measurements 	• Age = 72.14 ± 7.37 • Male = 121, Female = 9 • BMI = 21.05 ± 3.68	n in GOLD stage of COPD: • Stage I mild: 44 • Stage II moderate: 53 • Stage III severe: 29 • Stage IV: 4	• FEV ₁ , L = 1.28 ± 0.52 • FEV ₁ , % predicted = 70.61 ± 28.03
Annegarn 2012 ³⁶	Nether- lands	79	 Inclusion = Patients with COPD recruited from pre-rehabilitation assessment Exclusion = Patients who had had exacerbation-related hospitalization within 4 weeks prior to assessment, who used a rollator, or who were unable to complete at least one 6MWT without stopping 	• Age = 64.3 ± 8.9 • Male = 47, Female = 32 • BMI = 24.7 ± 4.5	n in GOLD stage of COPD: • Stage I mild: 8 • Stage II moderate: 36 • Stage III severe: 28 • Stage IV very severe: 7	• FEV ₁ , % predicted = 53.5 ± 18.7
Chen L 2012 ⁷⁴	Taiwan	17	 Inclusion = Patients with clinically stable COPD without baseline oxygen saturation recruited from July 2008 to July 2010 who were 60–80 years old, non-smokers or smoking history of 10 pack years, with no pathology that could interfere with the ability to perform exercises Exclusion = Not stated 	• Age = 73.5 ± 5.7 • Male = 17, Female = 0 • BMI = 22.3 ± 3.5	n in GOLD stage of COPD: • Stage I mild: 1 • Stage II moderate: 6 • Stage III severe: 6 • Stage IV very severe: 4	 FEV₁, L = 0.9 ± 0.1 FEV₁, predicted = 43.1 ± 16.2 FVC, L = 1.7 ± 0.1 FVC, % predicted = 54.5 ± 13.2
Chen S 2012 ⁴⁴	Taiwan	37	 Inclusion = COPD patients with chronic hypercapnia, FEV₁ < 50% predicted, daytime awake PaCO₂ > 45 mmHg, PaO₂ 80 mmHg, pH 7.30–7.45 with room air, medical stability in preceding 3 months, good motivation to participate in study, and have not participated in pulmonary rehabilitation programs Exclusion = Patients who could not perform 6MWT owing to various other diseases (e.g., orthopedic or neuromuscular problems or other systematic diseases) and were uncooperative or poorly motivated to participate 	• Age = 64.4 ± 10.9 • Male = 28, Female = 9 • BMI = 21.4 ± 4.8	Not stated	• FVC, L = 1.2 ± 0.5 • FVC, % predicted = 41.4 ± 17.1 • FEV ₁ , L = 0.6 ± 0.20 • FEV ₁ , % predicted = 26.1 ± 7.7 • FEV ₁ /FVC, % = 50.9 ± 12.7
Waatevik 2012 ⁷⁵	Norway	370	 Inclusion = Patients with COPD included in the previously published Bergen COPD cohort study who were able to complete a 6MWT without stopping and without supplemental oxygen Exclusion = Not stated 	• Age = 63.3 ± 6.8 • Male = 223, Female = 147 • BMI = Not stated	Not stated	• FEV ₁ , % predicted = 50.4 ± 13.8

ATS=American Thoracic Society; BMI=body mass index; BODE=Body mass index, airflow Obstruction, Dyspnea and Exercise capacity index; BTS=British Thoracic Society; COPD=chronic obstructive pulmonary disease; ERS=European Respiratory Society; FEV₁=forced expiratory volume in 1 second; FVC=forced vital capacity; GOLD, Global initiative for chronic Obstructive Lung Disease; HR=heart rate; IQR=interquartile range; ISWT=incremental shuttle walk test; IVC=inspiratory slow vital capacity; kPa=kilopascal; L=litres; 6MWT=6-minute walk test; MRC=Medical Research Council; MVV=maximal voluntary ventilation; NR=not reported; PaCO₂=partial pressure of arterial carbon dioxide; PaO₂=partial pressure of arterial oxygen; PR=pulmonary rehabilitation; RER=respiratory exchange ratio; RV=residual volume; SD=standard deviation; SpO₂=arterial oxygen saturation; TLC=total lung capacity; VC=vital capacity.

Values presented are mean ± standard deviation unless otherwise stated.

significant Pearson's correlations (very weak to moderate; r=-0.16-0.41), with 1 study³⁸ reporting a negative correlation. The remaining 2 studies reported that Pearson's correlations were not significant.^{61,64}

FVC and ICET, TT and VO_2

Of 4 studies^{45,49,59,62} assessing associations between FVC and peak VO₂ obtained during ICET, 3 studies^{45,49,59} presented significant Pearson's correlations (strong; r=0.54-0.67); the remaining study reported that Pearson's correlations were not significant.⁶² One further study reported a significant Pearson's correlation between FVC and W_{max} achieved during ICET (moderate; r=0.58).⁴¹ One other study reported a significant Pearson's correlation between FVC and peak VO₂ during TT (strong; r=0.63).⁷⁰

Correlations Between Exercise Test Outcomes and IC

Baseline IC was reported in 6 studies (Table 3; Figure 2c).^{41,42,50,52,73,74}

IC and 6MWT

Of these, all 3 studies^{41,52,74} assessing Pearson's correlations for IC and the 6MWT found significant relationships (weak to moderate; r=0.38-0.62); a further 2 studies also reported significant Spearman's values for this relationship (moderate; $\rho=0.51$ and 0.57).^{42,73}

IC and ISWT, ICET and TT

Significant moderate correlations were also reported between IC and ISWT (ρ =0.50), and W_{max} during ICET (r=0.59) and TT (ρ =0.48).⁵⁰

Correlations Between Exercise Test Outcomes and Exercise-induced Changes in PaO₂

A total of 14 studies assessed correlations between change in PaO_2 and exercise test outcomes (Table 3; Figure 2d).

PaO_2 and 6MWT

Three ^{44,47,75} of 5 studies ^{39,40,44,47,75} studies assessing Pearson's correlations between 6MWT and PaO₂ reported significant correlations (very weak to weak; *r*=0.15–0.35), with the 2 remaining studies ^{39,40} reporting no significant correlation. Of 3 studies ^{63,76,77} reporting Spearman's correlations between 6MWT and PaO₂, 2 studies ^{63,76} found no significant association and 1 study ⁷⁷ found a significant correlation (moderate; ρ =0.42).

PaO_2 and 12MWT

Pearson's correlations for 12MWT were assessed in 4 studies 48,58,68,78 : 2 studies 48,68 reported moderate correlations (*r*=0.42–0.44) with the remaining 2 studies 58,78 reporting no correlation.

PaO₂ and ISWT

Of 3 studies reporting Spearman's correlations for the ISWT, 50,76,77 2 studies 50,77 found moderate correlations (ρ =0.42–0.53) with 1 study 76 reporting no correlation. In the 3 studies assessing ICET (peak VO₂), 47,63,80 2 studies 47,80 reported only weak Pearson's correlations (r=0.21–0.28) with 1 study 63 reporting no Spearman's correlation.

Correlations Between Exercise Test Outcomes and TLC

Additionally, it was anticipated that associations between exercise and TLC would be included in the review. However, too few studies were found and therefore not included in the final results.

Discussion

This study has shown that there are limited data supporting strong correlations between exercise test outcomes and commonly used assessments of lung function. FEV₁ appears to correlate well with the outcomes of the ICET (both VO_2 and W_{max}). The association between the most commonly used field-

Table 3. Correlations Between Exercise Test Outcomes andSelected Physiological Variables

	6M\	NT	12MV	VT	ISW	ISWT	ESW	Т	ICET (VO_2)	ICET ((W _{max})	ax) ECE	т тт		
	Corr	N	Corr	Ν	Corr	N	Corr	Ν	Corr	N	Corr	N	Corr	Ν	Corr	Ν
FEV	1															
r	0.23*47	365	0.15*38	9	[0.51, 0.22, 0.25]* ⁶⁹	10			0.42*62	38	0.34*57	45			0.47*70	20
	0.33***52	130	0.26*60	50					0.46*47	365	0.51***55	50				
	0.37*65	60	0.29^{**68}	83					0.53^{**45}	37	0.58**72	40				
	0.37*66	209	0.31*58	45					0.64^{**54}	41	0.65***41	1218				
	0.38***43	124	0.62***48	50					0.65^{**59}	35	0.81**71	27				
	0.38^{***41}	1218							0.76^{*49}	20						
	0.40^{**40}	91							0.83^{**71}	27						
	[0.44**, 0.56**] ¹⁶	198														
	0.45**36	79														
	0.55**72	40														
	0.58^{*62}	38														
	0.62***39	49														
	NS^{54}	41	NS^{59}	35	0.4051	21	NS^{67}	10								
	0.3146	27	NS^{61}	13	0.3056	20										
	0.3656	20	0.28^{64}	10												
	NS^{37}	88														
	0.1844	37														
ρ	0.44***42	50			0.65**50	25			0.37^{*63a}	36	0.55^{63a}	36	0.58^{63a}	36	0.64*50	29
	0.41 ^{*63a}	36													0.65**53	20
	0.2973	40														
FVC																
r	0.32^{*41a}	1218	-0.16^{38}	9					0.54^{**45}	37	0.58^{*41a}	1218			0.63**70	20
	0.38***43	124	0.29*60	50					0.66*49	20						
	0.58^{***39}	49	0.35*58	45					0.67^{**59}	35						
	0.59*62	38	0.41*59	35												
	0.3446	27	NS^{61}	13					0.32^{62}	38						
	0.1644	37	0.0064	10												
ρ	0.54***42	50			0.52^{*50}	25									0.46*50	29
															0.77^{***53}	20
IC	distribute of the				1											
r	0.38****	1218									0.59^41	1218				
	0.43****	130														
	0.62***	17			0 = 0 *50	~ -									0.40*50	
ρ	0.51****	40			0.50	25									0.48***	29
D O	0.57	50														
PaO ₂	2	265	0.4068	07					0.01*47	265					0 56*78	15
/	0.15	365	0.42**	83					0.21	365					0.56	15
	0.23	370	0.44	50					0.28	62						
	0.35	37	0 5078	15												
	0.27	49	0.50	15												
0	N5 ¹⁰	91	-0.29	45	0.40*77	04									0 67**50	00
٢	0.42	24			0.42	24 05									0.07	29
	NC 76	10			NO 76	20 10			NC 63	26	MC 63	26	MC 63	26		
	NO 63	26			IND .	10			110 -	30	110	30	110	30		
	112	30														

Corr=correlation; ECET=endurance cycle ergometer test; ESWT=endurance shuttle walk test; FEV₁=forced expiratory volume in 1 second; FVC=forced vital capacity; IC=inspiratory capacity; ICET=incremental cycle ergometer test; ISWT=incremental shuttle walk test; 6MWT=6-minute walk test; 12MWT=12-minute walk test; NS=studies reporting no significant correlation; ρ =Spearman's rank coefficient; PaO₂=partial pressure of arterial oxygen; *r*=Pearson's regression coefficient; TT=treadmill test; VO₂=oxygen consumption; W_{max}=highest workload achieved.

Square parentheses enclose the results of different subgroups within the same study.

*p < 0.05,**p < 0.01, ***p < 0.001, No (*), not significant r value, NS not significant (r value not provided in original article) ^a significance assumed as p < 0.05 from table inclusion criteria, actual value not given in text. However, only those p values deviating from table inclusion criteria are shown.

based tests of exercise capacity, the 6MWT and 12MWT, and FEV $_1$ is unclear.

FEV₁ is used as the main diagnostic criterion for COPD,^{4, 22, 23} and the European Medicines Agency also suggests that pre- and post-bronchodilator FEV₁, both at baseline and repeatedly during follow-up, is used to demonstrate the efficacy of therapeutic interventions in clinical trials.²⁴ FEV₁ correlates better with laboratory-based tests such as the ICET (primarily moderate to very strong correlations) than with field-based tests, such as 6MWT and the 12MWT (although these do consistently demonstrate weak/moderate correlations). The ICET also appeared to have the closest relationship to FVC and IC, albeit with very limited evidence. Conversely, ICET correlated only weakly with PaO₂ in studies reporting this relationship.

Some caution is warranted in placing too much emphasis on lung function alone as a gold standard assessment in COPD relative to exercise tests. While individual lung function measurements, such as FEV₁, are used in diagnosing the severity of COPD and predicting mortality,²⁷ it should be remembered that COPD patients have systemic disease manifestations that are not necessarily reflected by a single lung function result. Patients with similar FEV_1 may nevertheless have significantly different function defects not captured by this test. Exercise tests, in measuring whole lung functionality, may be expected to correlate imprecisely with individual lung function parameters. Furthermore, their design may capture the systemic aspects of COPD lung dysfunction more effectively and thus provide additional prognostic information. In fact, several prospective studies have shown that 6MWT is a better predictor of mortality than FEV₁ in patients with severe COPD^{16,81} and coupling 6MWT output to individual lung function parameters like FEV_1 and PaO_2 has proven utility 82,83 and underpins the rationale for the multidimensional grading system for COPD, the BMI, airflow, Obstruction, Dyspnea and

Excercise capacity (BODE) index.⁸⁴

The observation that the 6MWT and the 12MWT are the most often reported in conjunction with measures of lung function is unsurprising as they are well established, require little equipment, training or preparation, and (for the 6MWT at least) minimal, clinically important, difference reference values are available. Of the laboratory-based tests, the ICET is by far the most widely used. However, this serves to highlight the paucity of data reporting the relationship between other exercise tests and measures of lung function. When reported, for example, the ISWT and TT exhibited mostly moderate to good correlations with the 4 physiological parameters assessed in this review. However, it is difficult to draw definitive conclusions about the applicability of these tests when the data are so rarely reported. Correlations between the FEV₁, FVC, IC and PaO₂ and the ESWT and ECET have so seldom been reported that no meaningful interpretation of these relationships can be made.

Exercise tests, such as those reviewed here, are used to assess the exercise capacity of patients with COPD. These tests are important because the systemic consequences of COPD include reduced exercise capacity and ensuing decreases in physical activity. However, the findings of this systematic review suggest that the relationships between exercise and FEV₁, FVC, IC and PaO₂ are under-reported for most tests, and even for the most commonly reported tests, these associations are often equivocal. This suggests that although the information obtained from these tests may be of use in assessing exercise tolerance, caution should be used before applying the results of these tests to make assessments of physiological effects of COPD. Exercise capacity appears to be such a multifactorial outcome that it is difficult to conclusively link test performance to any of the physiological variables reviewed. This supports a recent systematic review that qualitatively compared patients' performance in these

Figure 2. Ranges of Reported Pearson's Correlations

Ranges of reported Pearson's correlations in studies reporting significant associations between exercise tests and: a) FEV₁; b) FVC; c) IC and d) PaO₂. Brackets indicate the number of studies reporting significant correlations/total number of studies reporting Pearson's correlations. Square brackets indicate number of patients in studies reporting significant Pearson's correlations/total number of patients in studies assessing Pearson's correlations.

ECET=endurance cycle ergometer test; ESWT=endurance shuttle walk test; ICET=incremental cycle ergometer test; ISWT=incremental shuttle walk test; 6MWT=6-minute walk test; 12MWT=12-minute walk test; *r*=Pearson's regression coefficient; TT=treadmill test; VO₂=oxygen consumption; W_{max}=highest workload achieved.

exercise tests and found no discernible advantage of any particular test.³⁴

Limitations of this review include the wide range of study designs and patient cohorts involved. Furthermore, the association between lung function and exercise performance are most probably not adjusted for important confounders such as age, gender, height, comorbidities and weight. It is also possible that study results are confounded by limited patient numbers. Using the most commonly reported association as an example, the 12 studies reporting a significant Pearson's correlation between 6MWT and FEV₁ had a median nof 108 (range: 38-1218); the 5 studies that reported no significant association between these parameters had a median n of 39 (range: 20–88). It is therefore possible that significant associations could be underreported owing to a type II statistical reporting error. On the other hand, it can be seen where r/ρ are reported for correlations between the same 2 parameters, that there is a tendency for larger populations to have a lower value and associated lower significance, suggesting that smaller populations can over-emphasize a genuine relationship. Both of these factors must be considered when designing studies assessing these exercise tests as well as the ability of pharmacological interventions to affect their output. Other confounding variables that are difficult to control for in such a review include whether or not the guidelines from the ATS were strictly adhered to in all the tests. This is particularly important regarding the technical aspects of tests such as 6MWT where even small deviations in methodology can influence output.⁸⁵ Finally, the inclusion criteria and COPD severity are often not clearly stated by the studies included in this review. Therefore, there is a risk that the patients in the included studies are not broadly homogenous. However, in this case the weakness lies in the reporting of studies, and we recommend that future studies clearly state inclusion criteria and clinical rationale for diagnosis whenever possible.

Recent guidelines on the diagnosis and treatment of COPD indicate that assessment of disease severity is improved by using functional criteria such as exercise capacity.^{4,22,23} However, no distinction is made in these guidelines between the different exercise tests. For example, ICET and 6MWT output are thought to measure different physio-biochemical variables,⁸⁶ and it has been argued that the latter is a better reflection of a patient's ability to carry out daily activities.⁸⁷ The current findings suggest that clinicians or investigators wishing to assess exercise capacity in patients with COPD must carefully consider the physiological consequences of COPD when interpreting the results of these tests. In particular, based on our review of the available data, it is important not to choose an exercise test based solely on patient lung function. Rather, tests should be chosen based on the ability of a pharmaceutical agent to influence the test based on the effect that agent is anticipated to have. For example, an agent that primarily affects lungs and subsequently improves tests measuring lung function, volume and breathlessness may well differ from an agent anticipated to have more systemic consequences.

Acknowledgements:

All authors have contributed to the conception and design of the study, analysis and interpretation of data and revision of the manuscript. All authors approve the final version of the manuscript. Martin Bell and Iain Fotheringham of Oxford PharmaGenesis, Ltd., provided writing support funded by GlaxoSmithKline, Uxbridge, United Kingdom.

Declaration of Interest:

Yogesh Suresh Punekar, John Riley and Sarah Cockle are current employees of GlaxoSmithKline, Uxbridge, United Kingdom. Sally Singh was involved with the development of the incremental shuttle walk test, and has served on advisory boards for GlaxoSmithKline. Sally Singh was partially funded by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care East Midlands. Support was also provided by the NIHR Leicester Respiratory Biomedical Research Unit. The views expressed are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health.

References

- Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. *Eur Respir J.* 2006;27(2):397-412. doi: http://dx.doi.org/10.1183/09031936.06.00025805
- Halbert RJ, Natoli JL, Gano A, Badamgarav E, Buist AS, Mannino DM. Global burden of COPD: systematic review and meta-analysis. *Eur Respir J*. 2006;28(3):523-532. doi: http://dx.doi.org/10.1183/09031936.06.00124605
- Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. *PLoS Med.* 2006;3(11):e442. doi: http://dx.doi.org/10.1371/journal.pmed.0030442
- 4. Global initiative for chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management and prevention of COPD. GOLD website. http://www.goldcopd.org/. Published 2014. Accessed September 12, 2014.
- Gosker HR, Lencer NHMK, Franssen FME, van der Vusse GJ, Wouters EF, Schols AM. Striking similarities in systemic factors contributing to decreased exercise capacity in patients with severe chronic heart failure or COPD. *Chest.* 2003;123(5):1416-1424. doi: http://dx.doi.org/10.1378/chest.123.5.1416
- O'Donnell DE, Gebke KB. Activity restriction in mild COPD: a challenging clinical problem. Int J Chron Obstruct Pulmon Dis. 2014; 9: 577-588. doi: http://dx.doi.org/10.2147/COPD.S62766
- Troosters T, Sciurba F, Battaglia S, et al. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. *Respir Med.* 2010; 104(7): 1005-1011. doi: http://dx.doi.org/10.1016/j.rmed.2010.01.012
- Diaz AA, Morales A, Diaz JC, et al. CT and physiologic determinants of dyspnea and exercise capacity during the sixminute walk test in mild COPD. *Respir Med.* 2013; 107(4): 570-579. doi: http://dx.doi.org/10.1016/j.med.2012.12
- Aliverti A, Macklem PT. How and why exercise is impaired in COPD. *Respiration*.2001;68(3): 229-239. doi: http://dx.doi.org/10.1159/000050502
- Wust RC, Degens H. Factors contributing to muscle wasting and dysfunction in COPD patients. *Int J Chron Obstruct Pulmon Dis.* 2007; 2(3): 289-300.
- Jones P, Miravitlles M, van der Molen T, Kulich K. Beyond FEV(1) in COPD: a review of patient-reported outcomes and their measurement. *Int J Chron Obstruct Pulmon Dis*. 2012;7:697-709. doi: http://dx.doi.org/10.2147/COPD.S32675
- Jones PW. Issues concerning health-related quality of life in COPD. Chest. 1995;107(5 Suppl):187S-193S. doi: http://dx.doi.org/10.1378/chest.107.5_Supplement.187S
- Cooper CB. The connection between chronic obstructive pulmonary disease symptoms and hyperinflation and its impact on exercise and function. *Am J Med.* 2006;119(10 Suppl 1):21-31. doi: http://dx.doi.org/10.1016/j.amjmed.2006.08.004
- Mahler DA, Harver A. A factor analysis of dyspnea ratings, respiratory muscle strength, and lung function in patients with chronic obstructive pulmonary disease. *Am Rev Respir Dis.* 1992;145(2 Pt 1):467-470.
 - doi: http://dx.doi.org/10.1164/ajrccm/145.2_Pt_1.467

 Ozgur ES, Nayci SA, Ozge C, Tasdelen B. An integrated index combined by dynamic hyperinflation and exercise capacity in the prediction of morbidity and mortality in COPD. *Respiratory Care*. 2012;57(9):1452-1459.

doi: http://dx.doi.org/10.4187/respcare.01440

- Pinto-Plata VM, Cote C, Cabral H, Taylor J, Celli BR. The 6-min walk distance: change over time and value as a predictor of survival in severe COPD. *Eur Respir J.* 2004;23(1):28-33. doi: http://dx.doi.org/10.1183/09031936.03.00034603
- Spruit MA, Polkey MI, Celli B, et al. Predicting outcomes from 6-Minute walk distance in chronic obstructive pulmonary disease. J Am Med Dir Assoc. 2012;13(3):291-297. doi: http://dx.doi.org/10.1016/j.jamda.2011.06.009
- Oga T, Nishimura K, Tsukino M, Sato S, Hajiro T. Analysis of the factors related to mortality in chronic obstructive pulmonary disease: role of exercise capacity and health status. *Am J Respir Crit Care Med.* 2003;167(4):544-549. doi: http://dx.doi.org/10.1164/rccm.200206-583OC

Tojo N Ichioka M Chida M Miyazato I Yoshizawa Y M

 Tojo N, Ichioka M, Chida M, Miyazato I, Yoshizawa Y, Miyasaka N. Pulmonary exercise testing predicts prognosis in patients with chronic obstructive pulmonary disease. *Intern Med.* 2005;44(1):20-25.

doi: http://dx.doi.org/10.2169/internalmedicine.44.20

 Ringbaek T, Martinez G, Brøndum E, Thøgersen J, Morgan M, Lange P. Shuttle walking test as predictor of survival in chronic obstructive pulmonary disease patients enrolled in a rehabilitation program. J Cardiopulmon Rehabil Prev. 2010;30(6):409-414.

doi: http://dx.doi.org/10.1097/HCR.0b013e3181e1736b

 Williams JEA, Green RH, Warrington V, Steiner MC, Morgan MD, Singh SJ. Development of the i-BODE: Validation of the incremental shuttle walking test within the BODE index. *Respir Med.* 2012;106(3):390-396.

doi: http://dx.doi.org/10.1016/j.rmed.2011.09.005

- American Thoracic Society/European Respiratory Society Task Force. Standards for the Diagnosis and Management of Patients with COPD, Version 1.2. American Thoracic Society website. http://www.thoracic.org/go/copd. Published 2005. Accessed May 19, 2014.
- 23. National Institute for Health and Clinical Excellence (NICE). Management of chronic obstructive pulmonary disease in adults in primary and secondary care (partial update). NICE website. http://guidance.nice.org.uk/cg101. Published 2010. Accessed May 19, 2014.
- 24. European Medicines Agency. Guidelines on clinical investigation of medicinal products in the treatment of chronic obstructive pulmonary disease (COPD). European Medicines Agency website. http://www.ema.europa.eu/docs/ en_GB/document_library/Scientific_guideline/2012/08/ WC500130880.pdf. Published 2012. Accessed July 2014.
- Pichurko BM. Exercising your patient: which test(s) and when? *Respir Care*. 2012; 57(1): 100-110. doi: http://dx.doi.org/10.4187/respcare.01428
- Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. *Eur Respir J*. 2005; 26(2):319-338. doi: http://dx.doi.org/10.1183/09031936.05.00034805
- 27. Hansen EF, Phanareth K, Laursen LC, Kok-Jensen A, Dirksen A. Reversible and irreversible airflow obstruction as predictor of overall mortality in asthma and chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* 1999; 159 (4 Pt 1): 1267-1271. doi: http://dx.doi.org/10.1164/ajrccm.159.4.9807121

- Jones PW. Health status and the spiral of decline. COPD. 2009; 6(1): 59-63. doi: http://dx.doi.org/10.1080/15412550802587943
- Trzaska-Sobczak M, Brozek G, Farnik M, Pierzchala W. Evaluation of COPD progression based on spirometry and exercise capacity. *Pneumonol Alergol Pol.* 2013;81(4):288-293.
- Cerveri I, Pellegrino R, Dore R, et al. Mechanisms for isolated volume response to a bronchodilator in patients with COPD. J Appl Physiol (1985). 2000; 88(6): 1989-1995.
- Parker CM, Voduc N, Aaron SD, Webb KA, O'Donnell DE. Physiological changes during symptom recovery from moderate exacerbations of COPD. *Eur Repir J.* 2005; 26(3): 420-428. doi: http://dx.doi.org/10.1183/09031936.05.00136304
- Casanova C, Cote C, de Torres JP, et al. Inspiratory-to-lung capacity ratio predicts mortality in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med.* 2005; 171(6): 591-597.

doi: http://dx.doi.org/10.1164/rccm.200407-867OC

- Gay PC. Chronic obstructive pulmonary disease and sleep. *Respir* Care. 2004: 49 (1): 39-51.
- 34. Fotheringham I, Meakin G, Punekar YS, Riley JH, Cockle SM, Singh SJ. Comparison of laboratory-and field-based exercise tests for COPD: a systematic reivew. Int J Chron Obstruct Pulmon Dis. 2015; 10:625-643. doi: http://dx.doi.org/10.2147/COPD.S70518
- 35. Moher D, Liberati A, Tetzlaff J, Altman DG for the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009; 339: b2535. doi: http://dx.doi.org/10.1136/bmj.b2535
- 36. Annegarn J, Spruit MA, Savelberg HHCM, et al. Differences in walking pattern during 6-min walk test between patients with COPD and healthy subjects. *PLoS ONE*. 2012;7(5). doi: http://dx.doi.org/10.1371/journal.pone.0037329
- Behnke M, Wewel AR, Kirsten D, Jorres RA, Magnussen H. Exercise training raises daily activity stronger than predicted from exercise capacity in patients with COPD. *Respir Med.* 2005;99(6):711-717.

doi: http://dx.doi.org/10.1016/j.rmed.2004.10.016

- Bernstein ML, Despars JA, Singh NP, Avalos K, Stansbury DW, Light RW. Reanalysis of the 12-minute walk in patients with chronic obstructive pulmonary disease. *Chest.* 1994;105(1):163-167. doi: http://dx.doi.org/10.1378/chest.105.1.163
- Borak J, Chodosowska E, Matuszewski A, Zielinski J. Emotional status does not alter exercise tolerance in patients with chronic obstructive pulmonary disease. *Eur Respir J*. 1998;12(2):370-373.
- 40. Brasil Santos D, de Assis Viegas CA. Correlation of levels of obstruction in COPD with lactate and six-minute walk test. *Rev Port Pneumol.* 2009;15(1):11-25. doi: http://dx.doi.org/10.1016/s2173-5115(09)70085-5
- Brown CD, Benditt JO, Sciurba FC, et al. Exercise testing in severe emphysema: Association with quality of life and lung function. COPD. 2008;5(2):117-124. doi: http://dx.doi.org/10.1080/15412550801941265
- Camargo LA, Pereira CA. Dyspnea in COPD: beyond the modified Medical Research Council scale. J Bras De Pneumol. 2010;36(5):571-758.

- Carter R, Holiday DB, Nwasuruba C, et al. 6-minute walk work for assessment of functional capacity in patients with COPD. *Chest.* 2003; 123(5) :1408-1415.
- 44. Chen S, Wu YT, Lin JJ, Lee CN, Huang CY, Chiang LL. The correlations of the six-minute walk test and respiratory functions in chronic obstructive pulmonary disease patients with chronic hypercapnia. *J Exp Clin Med.* 2012;4(1):47-51. doi: http://dx.doi.org/10.1016/j.jecm.2011.11.008
- 45. Chetty KG, Brown SE, Milne N, Light RW. Right ventricular dysfunction and its relationship to maximal oxygen consumption of patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil. 1989;9(5):183-187. doi: http://dx.doi.org/10.1097/00008483-198905000-00001
- 46. Chuang ML, Lin IF, Wasserman K. The body weight-walking distance product as related to lung function, anaerobic threshold and peak VO2 in COPD patients. *Respir Med.* 2001;95(7):618-626. doi: http://dx.doi.org/10.1053/rmed.2001.1115
- Cote CG, Pinto-Plata V, Kasprzyk K, Dordelly LJ, Celli BR. The 6-min walk distance, peak oxygen uptake, and mortality in COPD. Chest. 2007;132(6):1778-1785. doi: http://dx.doi.org/10.1378/chest.07-2050
- 48. Dekhuyzen PNR, Kaptein AA, Dekker FW. Twelve-minute walking test in a group of Dutch patients with chronic obstructive pulmonary diseases: Relationship with functional capacity. *Eur J Respir Dis.* 1986;69(Suppl. 146):259-264.
- Dillard TA, Piantadosi S, Rajagopal KR. Determinants of maximum exercise capacity in patients with chronic airflow obstruction. *Chest.* 1989;96(2):267-271. doi: http://dx.doi.org/10.1378/chest.96.2.267
- Dowson LJ, Newall C, Guest PJ, Hill SL, Stockley RA. Exercise capacity predicts health status in alpha1-antitrypsin deficiency. *Am J Respir Crit Care Med.* 2001;163(4):936-941. doi: http://dx.doi.org/10.1164/ajrccm.163.4.2007048
- Emtner MI, Arnardottir HR, Hallin R, Lindberg E, Janson C. Walking distance is a predictor of exacerbations in patients with chronic obstructive pulmonary disease. *Respir Med.* 2007;101(5):1037-1040.

doi: http://dx.doi.org/10.1016/j.rmed.2006.09.020

- 52. Fujimoto H, Asai K, Watanabe T, Kanazawa H, Hirata K. Association of six-minute walk distance (6MWD) with resting pulmonary function in patients with chronic obstructive pulmonary disease (COPD). Osaka City Med J. 2011;57(1):21-29.
- 53. Fujita E, Nagasaka Y, Kozuka T, Ebara H, Fukuoka M. Correlation among the indices of high-resolution computed tomography, pulmonary function tests, pulmonary perfusion scans and exercise tolerance in cases of chronic pulmonary emphysema. *Respiration*. 2002;69(1):30-37.

doi: http://dx.doi.org/10.1159/000049367

- 54. Gosselink R, Troosters T, Decramer M. Peripheral muscle weakness contributes to exercise limitation in COPD. Am J Respir Crit Care Med. 1996;153(3):976-980. doi: http://dx.doi.org/10.1164/ajrccm.153.3.8630582
- 55. Hill K, Jenkins SC, Cecins N, Philippe DL, Hillman DR, Eastwood PR. Estimating maximum work rate during incremental cycle ergometry testing from six-minute walk distance in patients with chronic obstructive pulmonary disease. *Arch Phys Med Rehabil.* 2008;89(9):1782-1787.

doi: http://dx.doi.org/10.1016/j.apmr.2008.01.020

- Hodgev VA, Aliman OI, Marinov BI, Kostianev SS, Mandulova PV. Cardiovascular and dyspnea response to six-minute and shuttle walk tests in COPD patients. *Folia Med.* 2003;45(3):26-33.
- 57. Kozu R, Jenkins S, Senjyu H, Mukae H, Sakamoto H, Kohno S. Peak power estimated from 6-minute walk distance in Asian patients with idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease. *Respirology*. 2010;15(4):706-713. doi: http://dx.doi.org/10.1111/j.1440-1843.2010.01744.x
- Light RW, Merrill EJ, Despars JA. Prevalence of depression and anxiety in patients with COPD. Relationship to functional capacity. *Chest.* 1985;87 (1):35-38.
 - doi: http://dx.doi.org/10.1378/chest.87.1.35
- McGavin CR, Gupta SP, McHardy GJR. Twelve minute walking test for assessing disability in chronic bronchitis. *BMJ*. 1976;1 (6013):822-823. doi: http://dx.doi.org/10.1136/bmj.1.6013.822
- Morgan AD, Peck DF, Buchanan DR, McHardy GJR. Effect of attitudes and beliefs on exercise tolerance in chronic bronchitis. *BMJ*. 1983;286 (6360):171-173. doi: http://dx.doi.org/10.1136/bmj.286.6360.171
- Mungall IPF, Hainsworth R. Assessment of respiratory function in patients with chronic obstructive airways disease. *Thorax.* 1979;34 (2):254-258. doi: http://dx.doi.org/10.1136/thx.34.2.254
- 62. Nakamura Y, Tanaka K, Shigematsu R, Homma T, Sekizawa K. Determinants of cardiorespiratory fitness in patients with chronic obstructive pulmonary disease, focusing on activities parallel to daily living. *Respirology*. 2004;9(3):326-330. doi: http://dx.doi.org/10.1111/j.1440-1843.2004.00605.x
- 63. Oga T, Nishimura K, Tsukino M, Hajiro T, Ikeda A, Mishima M. Relationship between different indices of exercise capacity and clinical measures in patients with chronic obstructive pulmonary disease. *Heart Lung*. 2002;31(5):374-381. doi: http://dx.doi.org/10.1067/mhl.2002.127941
- 64. O'Reilly JF, Shaylor JM, Fromings KM, Harrison BD. The use of the 12 minute walking test in assessing the effect of oral steroid therapy in patients with chronic airways obstruction. *British J Dis Chest*.1982; 76(4):374-382.
 - doi: http://dx.doi.org/10.1016/0007-0971(82)90073-0
- 65. Peruzza S, Sergi G, Vianello A et al. Chronic obstructive pulmonary disease (COPD) in elderly subjects: Impact on functional status and quality of life. *Respir Med.* 2003;97(6):612-617. doi: http://dx.doi.org/10.1053/rmed.2003.1488
- 66. Rejeski WJ, Foley KO, Woodard CM, Zaccaro DJ, Berry MJ. Evaluating and understanding performance testing in COPD patients. *J Cardiopul Rehabil.* 2000;20(2):79-88. doi: http://dx.doi.org/10.1097/00008483-200003000-00001
- 67. Revill SM, Morgan MDL, Singh SJ, Williams J, Hardman AE. The endurance shuttle walk: A new field test for the assessment of endurance capacity in chronic obstructive pulmonary disease. *Thorax.* 1999;54(3):213-22. doi: http://dx.doi.org/10.1136/thx.54.3.213
- 68. Schols AMWJ, Mostert R, Soeters PB, Greve LH, Wouters EFM. Nutritional state and exercise performance in patients with chronic obstructive lung disease. *Thorax*. 1989;44(11):937-941. doi: http://dx.doi.org/10.1136/thx.44.11.937

- Singh SJ, Morgan MDL, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. *Thorax*. 1992;47(12):1019-1024. doi: http://dx.doi.org/10.1136/thx.47.12.1019
- 70. Wakayama K, Kurihara N, Fujimoto S, Hata M, Takeda T. Relationship between exercise capacity and the severity of emphysema as determined by high resolution CT. *Eur Respir J*. 1993;6(9):1362-1367.
- Yoshikawa M, Yoneda T, Kobayashi A, et al. Body composition analysis by dual energy x-ray absorptiometry and exercise performance in underweight patients with COPD. Chest. 1999;115(2):371-375.
 - doi: http://dx.doi.org/10.1378/chest.115.2.371
- 72. Wijkstra PJ, TenVergert EM, van der Mark TW, et al. Relation of lung function, maximal inspiratory pressure, dyspnoea, and quality of life with exercise capacity in patients with chronic obstructive pulmonary disease. *Thorax.* 1994; 49(5): 468-472. doi: http://dx.doi.org/10.1136/thx.49.5.468
- 73. Pitta F, Takai MY, Ovierira NH, et al. Relationship between pulmonary function and physical activity in daily life in patients with COPD. *Respir Med.* 2008; 102(8): 1203-1207. doi: http://dx.doi.org/10.1016/j.rmed.2008.03.0004
- 74. Chen LF, Wang CH, Chou PC, et al. Association between emphysema score, six-minute walk and cardiopulmonary exercise tests in COPD. Open Respir Med J. 2012;6(1):104-110. doi: http://dx.doi.org/10.2174/1874306401206010104
- 75. Waatevik M, Johannessen A, Hardie JA, et al. Different COPD disease characteristics are related to different outcomes in the 6-minute walk test. COPD. 2012;9(3):227-234. doi: http://dx.doi.org/10.3109/15412555.2011.650240
- 76. Vagaggini B, Taccola M, Severino S, et al. Shuttle walking test and 6-minute walking test induce a similar cardiorespiratory performance in patients recovering from an acute exacerbation of chronic obstructive pulmonary disease. *Respiration*. 2003;70(6):579-584. doi: http://dx.doi.org/10.1159/000075202
- 77. Rosa FW, Camelier A, Mayer A, Jardim JR. Evaluating physical capacity in patients with chronic obstructive pulmonary disease: Comparing the shuttle walk test with the encouraged 6-minute walk test. [Portuguese, English]. *J Bras Pneumol.* 2006;32(2):106-113. doi: http://dx.doi.org/10.1590/S1806-37132006000200005
- 78. Chonan T, Hida W, Kikuchi Y, Shindoh C, Takishima T. Role of CO₂ responsiveness and breathing efficiency in determining exercise capacity of patients with chronic airway obstruction. *Am Rev Respir Dis.* 1988;138(6):1488-1493. doi: http://dx.doi.org/10.1164/ajrccm/138.6.1488
- 79. Pitta F, Takaki MY, Oliveira NHd, et al. Relationship between pulmonary function and physical activity in daily life in patients with COPD. *RespirMed*. 2008;102 (8):1203-1207. doi: http://dx.doi.org/10.1016/j.rmed.2008.03.004
- Baarends EM, Schols AMWJ, Mostert R, Wouters EFM. Peak exercise response in relation to tissue depletion in patients with chronic obstructive pulmonary disease. *Eur Respir J.* 1997;10(12):2807-13.

doi: http://dx.doi.org/10.1183/09031936.97.10122807

- Martinez FJ, Foster G, Curtis JL, et al. Predictors of mortality in patients with emphysema and severe airflow obstruction. *Am J Respir Crit Care Med.* 2006;173(12):1326-1334. doi: http://dx.doi.org/10.1164/rccm.200510-1677OC
- Casanova C, Cote C, Marin JM, et al. Distance and oxygen desaturation during the 6-min walk test as predictors of longterm mortality in patients with COPD. *Chest.* 2008;134(4):746-752. doi: http://dx.doi.org/10.1378/chest.08-0520
- Martin C, Chapron J, Hubert D, et al. Prognostic value of six minute walk test in cystic fibrosis adults. *Respir Med.* 2013;107(12):1881-1887.
 - doi: http://dx.doi.org/10.1016/j.rmed.2013.10.001
- Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. *N Engl J Med.* 2004;350(10):1005-1012. doi: http://dx.doi.org/10.1056/NEJMoa021322
- 85. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. *Eur Respir J.* 2014;44(6):1428-1446.

doi: http://dx.doi.org/10.1183/09031936.00150314

- 86. Turner SE, Eastwood PR, Cecins NM, Hillman DR, Jenkins SC. Physiologic responses to incremental and self-paced exercise in COPD: A comparison of three tests. *Chest.* 2004;126(3):766-773. doi: http://dx.doi.org/10.1378/chest.126.3.766
- 87. Solway S, Brooks D, Lacasse Y, Thomas S. A qualitative systematic overview of the measurement properties of functional walk tests used in the cardiorespiratory domain. *Chest.* 2001;119(1):25