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Alpha-1 antitrypsin deficiency (AATD) manifests primarily as early-onset emphysema caused by the destruction 
of the lung by neutrophil elastase due to low amounts of the serine protease inhibitor alpha-1 antitrypsin (AAT). 
The current therapy involves weekly intravenous infusions of AAT-derived from pooled human plasma that is 
efficacious, yet costly. Gene therapy applications designed to provide constant levels of the AAT protein are 
currently under development. The challenge is for gene therapy to provide sufficient amounts of AAT to normalize 
the inhibitor level and anti-neutrophil elastase capacity in the lung. One strategy involves administration of 
an adeno-associated virus (AAV) gene therapy vector to the pleural space providing both local and systemic 
production of AAT to reach consistent therapeutic levels. This review focuses on the strategy, advantages, 
challenges, and updates for intrapleural administration of gene therapy vectors for the treatment of AATD.
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Introduction

Alpha-1 antitrypsin deficiency (AATD) is an autosomal 
recessive disorder that affects 1/1500 to 1/5000 
people of European ancestry.1,2  In the United States, 
approximately 90,000 individuals are affected, with 
an additional 175,000 worldwide.1,3,4 The disease 
manifests primarily in the lung, presenting as early-
onset emphysema and a reduced lifespan.5-11 Smoking 
accelerates the lung destruction process.12-14  AATD 
can also present as other lung diseases including 
bronchiectasis and asthma, and a subset of individuals 
develop liver cirrhosis or rarely, hepatocellular 
carcinoma, panniculitis and vasculitic or autoimmune 
disorders.4,15-23 The emphysema associated with 
AATD is caused by the slow destruction of the lung 
parenchyma by unregulated neutrophil elastase, which 
is released by dying or activated neutrophils.5-7,24 
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AAT regulates neutrophil elastase and other proteases, 
including proteinase 3, α-defensins, and cathepsin 
G, and has been shown to have anti-inflammatory 
properties and the ability to modulate immune 
responses.25-34 AAT, a serine protease inhibitor 
(SERPIN), mainly acts in the lower respiratory tract to 
inhibit the action of these proteases. AAT deficiency 
results in an imbalance between the proteases and 
AAT in the lung leading to destruction of the lung 
matrix and damage to the alveolar structures.5–7,24,35

AAT is a 52 kDa protein that is produced and 
secreted mainly from the liver into the plasma. AAT 
reaches the lung primarily by diffusion from the 
circulation,5–8,10,13,36–38 but a small amount is 
also produced locally by bronchial epithelial cells, 
mononuclear phagocytes, and neutrophils.39-43 The 
normal range of AAT in the serum is 20 to 53 μM; 
levels >11 μM are required to protect the lung from 
destruction.4,7,13,44,45 The low levels of AAT in 
AATD are caused by mutations in the SERPINA1 
gene that has over 120 naturally occurring allelic 
variants.2,4,46-49 The normal M alleles, consisting 
of M1(Ala213), M1(Val213), M2, M3, and M4, are 
present in more than 98% of the population.50 The 
most prevalent deficient allele is the Z variant, which 
has a single amino acid substitution of lysine for 
glutamic acid at position 342 (E342K) that causes 
the polymerization of the AAT protein during post-
translational processing preventing its secretion from 
hepatocytes.1,2,8,51–54 Homozygous Z individuals 
have 10%-15% of the serum AAT levels of individuals 
with the normal M allele and account for  >95% of cases 
of clinically diagnosed AATD.2,5-7,13,16,38,55 The S 
allele, which has an amino acid substitution of valine 
for glutamic acid at position 264 (E264V), results in 
an AAT with reduced serum half-life due to instability 
of the protein.56-59  Homozygous S individuals have 
~50% of normal AAT serum levels and are not at risk, 
but 15% to 20% of SZ heterozygotes have serum levels 
<11 μM and are at risk for disease development.60 

The current therapeutic strategy to protect 
individuals with AATD from the development and 
progression of emphysema is to supplement the levels 
of plasma AAT above the level needed to prevent 
destruction by proteases. The susceptibility of the 
lung to destruction in the absence of AAT results 
from the significant portion of neutrophils that reside 
in the pulmonary capillaries leaving the lung at high 
risk from unchecked neutrophil elastase destruction.61 

AAT is produced mainly in liver hepatocytes and 
circulates systemically, but as the predominant 
serine protease inhibitor, its main function is to 
protect the fragile alveolar structures of the lung from 
neutrophil elastase. The level of AAT required for 
protection was determined to be 11 μM in the serum 
based on clinical observation of the development of 
emphysema in AATD patients.62 AAT reaches the 
lung by diffusion from the circulation, and the level 
in the lung interstitium is ~50% of plasma levels. 
Further diffusion into the epithelial lining fluid (ELF) 
is limited by the tight junctions formed by the cells 
of the alveolar epithelium. The level of AAT in ELF is 
~5% to 10% of plasma levels, and the level required for 
protection is 1.2 μM.36,62 Thus, the rationale behind 
the current treatment strategy is to normalize levels of 
AAT in the ELF and interstitium by infusing AAT into 
the circulation and allowing it to diffuse to the other 
compartments, thereby normalizing the AAT levels. As 
long as the AAT in the plasma is above the protective 
threshold of 11 μM, the alveolar compartments 
should receive sufficient AAT to be protected. Based 
on this hypothesis, the current therapy consists of 
weekly intravenous infusions of 60 mg/kg of AAT 
purified from pooled human plasma to boost the level 
of circulating AAT. With this protein amount, AAT 
levels in serum are highly increased directly after 
the infusion but fall to near the protective threshold 
after one week due to the 4.5 day half-life of AAT.62 
This therapeutic strategy was approved by the Food 
and Drug Administration (FDA) on the basis of its 
biochemical efficacy of maintaining the protective 
level of the AAT in the serum and the corresponding 
normalization of the AAT level and anti-neutrophil 
elastase capacity in the lungs.63  Clinical efficacy of this 
therapeutic strategy was demonstrated recently using 
computer tomography lung density scans at total lung 
capacity to validate the reduced rate of progression of 
lung destruction.64,65

Although AAT protein augmentation is effective at 
reestablishing AAT levels in plasma and lung ELF 
and in slowing the progression of the destructive 
lung disease caused by AATD,64,65 it is costly and 
requires weekly intravenous infusions of purified AAT 
from pooled human plasma. The necessary repetitive 
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intravenous therapy derived from a human product 
presents problems of patient compliance and risks of 
allergic reactions, viral contamination, or limitations 
in available supply.66-68 Gene therapy to treat AATD 
has the possibility to alleviate all of these issues. The 
potential for a one-time administration reduces the 
burden on the patient of weekly time-consuming and 
invasive procedures and the associated issue of patient 
compliance. If effective, once gene therapy has been 
delivered, constant levels of AAT protein would be 
generated and released into the circulation, eliminating 
the current pattern of AAT peaks directly after infusion 
and AAT troughs by the end of the cycle. Thus, gene 
therapy offers a strategy that will persistently provide 
protective levels of AAT to the lung and has lower risk 
with fewer issues for patients and supply.

The current gene therapy strategies for AAT 
therapy involve delivering the normal human M 
allele coding sequence under the control of a highly 
active constitutive promoter using a gene transfer 
vector (Figure 1).  The goal is for transduced cells to 
secrete sufficient amounts of AAT into the circulation 
to normalize the levels of protective AAT in the lungs 
by diffusion after a single administration. Although a 

number of gene transfer vectors have been tested for 
delivery of the normal M-type AAT coding sequence 
in the past 25 years (reviewed in Chiuchiolo and 
Crystal61 and Sondhi et al69), the adeno-associated 
virus (AAV) vectors are the delivery vehicles of choice. 
AAV is a small parvovirus that does not cause disease in 
humans and causes little toxicity upon administration 
at doses <1015 genome copies.70,71 AAV vectors are 
highly effective at transducing a broad range of organs 
in vivo and provide persistent expression of the protein 
when delivered to non-proliferating cells.70 There are 
6 classically described human serotypes of AAV and 
greater than 50 recently identified serotypes from 
humans and nonhuman primates (NHPs).72,73 Many 
AAV serotypes are available for use that have low 
prevalence in the general population and low or absent 
levels of pre-existing anti-vector immunity.72,73 
Serotypes AAV1, AAV2, AAV5, AAV6, AAV8, AAV9, 
and AAVrh.10 have all been used in preclinical studies 
of AAT therapy,74-88 and clinical studies have been 
carried out using AAV1 and AAV2 vectors.89-91
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Depending on the route of administration, the delivery 
of the AAT gene could allow AAT to be produced 
by many different cells and organs in addition 
to hepatocytes where the bulk of natural AAT is 
produced. This opens an array of possible routes of 
administration for a gene therapy vector, with the 
primary goal being to achieve the threshold levels of 
AAT protein of 11 μM in the serum and 1.2 μM in 
the alveolar ELF necessary to protect from neutrophil 
elastase proteolytic activity.7,13,36,62 Several different 
routes of administration have been attempted for 
AAT gene therapy. The earliest attempts targeted the 
respiratory tract epithelium directly, but the delivered 
vectors were unable to generate therapeutic levels of 
AAT.80,81,92,93 This failure is likely due to the natural 
defenses of the lung against pathogens and foreign 
substances, as well as the lack of viral receptors on 
the apical surface of respiratory epithelial cells.92-96  
Routes of delivery that target the liver directly, including 
intravenous and intraportal administration, have been 
assessed in preclinical studies but have not made the 
transition into humans.76,85,87 Several studies have 
evaluated AAV vectors targeted to skeletal muscle in 
both preclinical animal studies and human clinical 
trials.75,79,84,97 A clinical trial utilizing AAV2 yielded 
very low expression of AAT.98 A trial with AAV1 met 
with more success as sustained expression of AAT 
was achieved, but the levels were much lower than the 
therapeutic threshold.89 In a second trial with AAV1, 
levels of ~2% of the therapeutic level were sustained as 
long as 5 years.90,91 

While each of these strategies target generally 
a single organ for vector transduction and AAT 
expression, intrapleural administration allows for both 
targeting of the lung directly and systemic delivery 
of the AAV gene transfer vector. The pleura is a thin 
serous membrane that encloses the chest cavity 
attaching the chest wall (parietal pleura) to the lung 
parenchyma (visceral pleura)99,100 (Figure 2A).  Both 
the parietal and visceral pleura contain a single layer 
of mesothelial cells surrounded by a thin layer of 
connective tissue rich in lymphatic and blood vessels 
that are connected to the systemic circulation. The 
pleura layers are separated by a pleural fluid (0.5 to 1 
ml in humans).100-105 Intrapleural gene transfer vector 

The Case for Intrapleural 
Administration for Alpha-1 
Antitrypsin Gene Therapy 

delivery has the benefits of both local lung delivery by 
transduction of the mesothelial cells lining the pleura 
and systemic delivery from vector passing through 
open stomata in the visceral pleural lymphatics 
to the systemic circulation and then primarily to 
liver hepatocytes (Figure 2B). AAT produced by the 
mesothelial cells is secreted and diffuses into the 
lung parenchyma. Because the lymphatic system of 
the parietal pleura connects directly from the pleural 
space through stomata, this allows for parallel systemic 
distribution of the gene therapy vector to primarily 
the liver via the circulation.99,100,106 AAT produced 
in the liver can travel back to the lung through the 
circulatory system. The major advantage of intrapleural 
administration is that both the lung and liver are 
targeted by the gene therapy vector, increasing the 
possibility of producing a sufficient amount of AAT to 
provide a therapeutic effect (Figure 2C).

In a mouse preclinical model, De et al77 demonstrated 
that an AAV serotype 5-based vector expressing the 
human AAT gene produced higher levels of serum 
AAT via the intrapleural route of delivery compared 
to intramuscular administration at the same dose. 
Moreover, the AAV5-based vector produced about 
8-fold higher levels of AAT compared to the levels 
achieved by an AAV2-based vector via both the 
intramuscular and intrapleural route. Intrapleural 
delivery of AAV5 coding for human AAT (administered 
dose of 1011 gc) mediated AAT serum levels of 
900±50 μg/ml that were sustained up to 40 weeks post-
administration. This level is significantly greater (1.6-
fold) than the therapeutic threshold level of 570 μg/
ml (11 μM). The AAT levels in the bronchoalveolar 
lavage fluid were similar to that in serum, indicating 
local production of AAT in the lungs.77 These 
observations lend support to the concept that AAV5-
mediated intrapleural delivery of the AAT transgene 
can provide sufficient amounts of AAT to be able to 
protect the lung from proteolytic damage. 

To identify a more potent AAV serotype than AAV5, 
De et al78 compared 25 different AAV serotypes (16 
NHPs and 9 human AAV serotypes; all using the AAV2 
inverted terminal repeats flanking the same human 
AAT cDNA driven by the CAG promoter) in mice 
(Figure 1). The authors demonstrated that intrapleural 

Preclinical Efficacy of Intrapleural 
Administration of AAV Vectors 
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administration of the AAV nonhuman primate derived 
serotypes AAVrh.10 and AAV8 (both clade E) were 
the most effective at providing high serum AAT 
levels. Of the other serotypes tested, 11 were derived 
from rhesus macaques (AAV7, AAVrh.2, AAVrh.8, 
AAVrh.13, AAVrh.16, AAVrh.20, AAVrh.21, AAVrh.22, 
AAVrh.24, AAVrh.34 and AAVrh.43), and 1 was 
derived from cynomolgus macaque (AAVcy.5), 1 from 
baboon (AAVbb.2), 1 from chimpanzee (AAVch.5); 
and 9 from humans (AAV2, AAV5, AAV9, AAVhu.1, 
AAVhu.11, AAVhu.13, AAVhu.37, AAVhu.41, and 
AAVhu.47). The AAVrh.10 vector was chosen for 
further study. Administration of the AAVrh.10 vector 
(1011 gc) via the intrapleural route in the left lung 
resulted in high levels of transgene expression in the 
lungs, diaphragm, and liver (Figure 3). Additionally, 
this route of administration with AAVrh.10 produced 
sustained therapeutic levels of serum AAT (>2.5-fold 
above the minimum of 570μg/ml, compared to the 
1.6-fold levels produced by AAV5) up to 24 weeks, the 
latest point of the study (Figure 4A). The high serum 
AAT levels translated to similar therapeutic levels in 
lung ELF, demonstrating biochemical efficacy (Figure 
4B). Importantly, the AAVrh.10 vector-produced AAT 
was functional in the inhibition of neutrophil elastase. 
In the context that AAV vectors are less potent in female 
mice, administration of AAVrh.10 vector (1011 gc) via the 
intrapleural route produced greater than therapeutic 
levels of AAT not just in male mice but also in female 
mice. The AAVrh.10 vector is derived from rhesus 
macaque, and therefore, another potential advantage 
is that pre-existing anti-vector immunity in humans is 
minimal.107  To assess whether the AAVrh.10 vector 
is functional in the presence of pre-existing immunity 
against the common human serotypes AAV2 and 
AAV5, administration of the AAVrh.10hAAT to 
AAV2- and AAV5-preimmune mice showed high 
level expression of AAT compared to nonimmune 
mice, thus demonstrating that AAVrh.10 is capable of 
circumventing common human immunity to AAV.78 

AAVrh.10hAAT Safety and Toxicology 
Study 

Based on the promising efficacy data with 
AAVrh.10hAAT in mice, the novel intrapleural 
delivery approach advanced to a safety and toxicology 
study.74 This study included 280 mice and 36 NHPs. 

The AAVrh.10 vector was administered via the 
intrapleural route at 2 doses in each species (1010 
and 1011 gc in mice, 1012 and 1013 gc in NHPs). The 
safety of the intrapleural vector delivery assessment 
parameters included hematology, serum chemistry 
and histopathology. Additionally, vector genome 
biodistribution and transgene expression were 
evaluated at multiple time points over 6 months. 

The mouse toxicology study involved 2 parts. For 
the primary study, 120 male and 120 female mice 
were administered either PBS or AAVrh.10hAAT 
(1010 gc or 1011 gc) by the intrapleural route, with 
assessment of: (1) safety following vector intrapleural 
administration; (2) biodistribution of the vector; 
and (3) hAAT mRNA expression in chest cavity 
organs over a course of 6 months. The second study 
assessed the potential toxicity of direct injection of 
PBS (control) or 1011 gc AAVrh.10hAAT into lung 
parenchyma in 20 male and 20 female mice, as a worse 
case scenario model for misplaced dosing during 
intrapleural administration over the course of a month. 
Overall, the AAVrh.10hAAT vector was well tolerated 
without any vector-related morbidity or mortality in 
either group, except a few surgical procedure-related 
deaths in the group receiving vector via intrapleural 
administration (n=8 of 240). For both studies, the 
assessment of hematology, serum chemistry and 
histopathology showed the therapy to be safe. In the 
intrapleural study, all of the vector-administered 
groups of mice developed dose-dependent AAVrh.10 
neutralizing antibodies. Assessment of vector DNA 
in various organs showed high levels of transduction 
of the liver (>106 copies/μg total DNA at the high 
dose and >104 copies/μg total DNA at the low dose) 
followed by the diaphragm and lungs, while other 
organs had low vector DNA levels, detectable only in 
the higher dose group. To assess whether intrapleural 
delivery of the vector mediated sufficient transgene 
expression in the chest cavity, AAT mRNA levels were 
quantified in chest cavity organs. The diaphragm had 
the highest levels of mRNA (>106 copies/μg total 
RNA at the high dose and >104 copies/μg total RNA 
at the low dose), and these levels were sustained up 
to 182 days, the latest time point of the study. Similar 
high levels of AAT mRNA were detectable in other 
chest cavity organs including pleura, left lung and 
right lung, demonstrating efficient transgene delivery 
to the proximity of the lung and hence availability to 
protect the lung from proteolytic damage.
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The NHP study included 18 male and 18 female 
African green monkeys. Overall safety and vector-
mediated expression of AAT in the chest cavity was 
assessed. All animals remained healthy with normal 
weight gain, heart rate and respiratory rate. Overall 
hematology parameters and serum chemistry data 
were normal, with only a few sporadic changes 
in individual animals that were not statistically 
significant. Pathology and organ weights measured 
at necropsy showed that there were no vector-related 
gross anatomic changes and organ-to-body and 
organ-to-brain weights remained normal. No vector-
related significant histopathological changes were 
observed. Assessment of AAVrh.10 neutralizing 
antibody levels in serum showed dose-dependent 
AAVrh.10 neutralizing antibody titers, persisting up 

to 360 days, the latest time point of the study. Finally, 
quantification of human AAT mRNA in the chest 
cavity tissues demonstrated high levels of human 
AAT mRNA localized to the proximity of the lung with 
the mRNA levels persisting up to 360 days at >104 
copies/μg total RNA in chest wall pleura, diaphragm, 
and diaphragm pleura.   

The combined data from these pivotal toxicology 
studies in 2 species (mice and NHPs) demonstrated 
that the approach of delivering AAVrh.10hAAT by the 
intrapleural route is both efficient and safe with no 
toxicity issues. This study provided the groundwork for 
the planned initiation of a clinical trial of intrapleural 
human AAVrh.10hAAT for the treatment of AAT 
deficiency.
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was submitted to the FDA.  This IND has been granted 
by the FDA (BBIND 16008) and has been licensed 
to Adverum Biotechnologies. The allowed clinical 
study (Protocol No. 1401014659, Clinical Trial ID: 
NCT02168686) is a gene transfer strategy designed 
to provide persistent high levels of human AAT. The 
study design has been previously published108 and is 

On the basis of the above described efficacy and safety/
toxicology studies of intrapleural administration of a 
serotype rh.10 replication-deficient AAV gene transfer 
vector expressing the human AAT cDNA in mice and in 
NHPs, an investigational new drug (IND) application 

Design of the Clinical Trial 
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summarized here.  
This study is designed as a phase I/II clinical trial 

to assess the safety and determine the preliminary 
efficacy of AAVrh.10hAAT (expressing the normal 
M1-type AAT) in humans with AATD. It is a 2-dose, 
open label study with n=5 individuals in each dose 
cohort (8x1012 and 8 x1013 gc) receiving the vector 
by the intrapleural delivery route. In addition, as 
a comparison to the intrapleural route, n=5 AAT-
deficient individuals at each dose level will instead 
be administered the AAVrh.10h AAT vector by the 
intravenous route. A total of n=20 individuals with a 
genotype of ZZ or Z Null, with serum AAT levels of 
<11μM will be recruited to participate in this study. All 
participants will be monitored before and after vector 
administration with a variety of safety measures. In 
addition, biologic efficacy parameters will be assessed 
to generate preliminary assessment of the therapeutic 
impact of this intervention including serum and ELF 
AAT levels and function. The goal for the treatment 
to be considered efficacious and therapeutic is for the 
serum AAT levels to be >11 μM and AAT levels in the 
lung ELF to be >1.2 μM, the levels considered to be the 
‘‘protective level’’ for AAT.63 

out to at least 5 years with little diminution in the 
level of expression.90,91  However, the total longevity 
of expression is not yet known, and this leaves the 
possibility that readministration of the AAT gene 
therapy may be necessary during the lifetime of 
the patient. Future studies would be needed to help 
determine if an alteration in AAV serotype or the use of 
an immunodepressant regimen might be required for 
readministration or whether additional enhancements 
to current vectors might further improve gene 
expression stability.
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Information gleaned from previous AAT clinical trials 
combined with the data from the preclinical studies 
suggest that intrapleural delivery of an AAVrh.10hAAT 
is a promising treatment for AATD. The upcoming 
clinical trials will help to determine whether 
administration of this vector by the intrapleural route 
will finally allow gene therapy to achieve the target 
protective level for biochemical efficacy. Achieving 
this primary end goal still opens the door for further 
questions to be evaluated. The next step after a 
demonstration of biochemical efficacy would be to 
evaluate clinical efficacy by monitoring stabilization 
of lung function or employing computer tomography 
lung density scans at total lung capacity to evaluate 
the rate of progression of lung destruction, as recently 
shown for AAT protein supplementation therapy.64,65  
The advantage of AAT gene therapy over the current 
protein supplementation therapy is the potential for a 
single administration of the treatment. AAV vectors 
have been shown to drive persistent AAT expression 
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