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Alpha-1antitrypsin deficiency (AATD) results from the intracellular polymerization and retention of mutant 
alpha-1antitrypsin (AAT) within the endoplasmic reticulum of hepatocytes.  This causes cirrhosis whilst the 
deficiency of circulating AAT predisposes to early onset emphysema.  This is an exciting time for researchers 
in the field with the development of novel therapies based on understanding the pathobiology of disease.  I 
review here augmentation therapy to prevent the progression of lung disease and a range of approaches to 
treat the liver disease associated with the accumulation of mutant AAT: modifying proteostasis networks that 
are activated by Z AAT polymers, stimulating autophagy, small interfering RNA and small molecules to block 
intracellular polymerization, and stem cell technology to correct the genetic defect that underlies AATD.
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Introduction

The serpinopathies are characterized by the misfolding 
and intracellular polymerization of members of the 
serpin (serine protease inhibitor) superfamily.1 
The best characterized of the serpinopathies is 
alpha-1 antitrypsin deficiency (AATD).2 Ninety five 
percent of severe deficiency of AAT results from 
the Glu342Lys mutation or Z allele.  This mutation 
arose approximately 2000 years ago and is found in 
1 out of 25 of the North European white population 
with 1 out of 2000 individuals carrying 2 Z alleles 
(homozygotes).  The Z mutation causes approximately 
70% of the synthesised protein to be degraded by 
the proteasome, 15%-20% misfolds to form ordered 
intracellular polymers and 10%-15% folds normally 
and is secreted into the circulation.3  The intracellular 
polymers are sequestered within the endoplasmic 
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reticulum as Periodic Acid Schiff-positive, diastase-
resistant inclusions2,4 that are associated with 
neonatal hepatitis, cirrhosis and hepatocellular 
carcinoma.5 AAT is a major circulating antiprotease 
that functions to regulate the proteolytic effects 
of neutrophil elastase within the lung.  The lack of 
circulating AAT predisposes the Z AAT homozygote to 
early onset panlobular basal emphysema, particularly 
in individuals who smoke tobacco.6 AATD is found 
in 1%-2% of individuals with chronic obstructive 
pulmonary disease (COPD)-a syndrome characterized 
by small airways disease and emphysema.  COPD will 
be the third most common cause of death worldwide 
by 2020.

AATD was first described by Laurell and Eriksson 
in 1963.7 The most effective interventions are still 
behavioral.8 In particular, individuals with AATD 
should refrain from smoking6 and probably avoid 
passive exposures from dusty occupations.9 This 
will help to preserve lung function.  Individuals with 
AATD should also avoid excessive consumption of 
alcohol and excessive weight gain (which predisposes 
to a fatty liver).  Both are additive to the liver damage 
caused by AATD. 

The only specific treatment for AATD is augmentation 
with pooled plasma AAT.10 This was launched in the 
United  States in 1988 on the basis of biochemical 
data showing that infusions raised circulating levels of 
AAT and provided protection against proteases within 
the lung.11 Two randomized clinical trials failed to 
demonstrate that augmentation therapy reduces the 
rate of decline in lung function as assessed by forced 
expiratory volume in 1 second (FEV1).12,13 However, 
augmentation therapy is associated with a reduction 
in sputum markers of inflammation14 and in the 
frequency of respiratory tract infections.15  The recent 
RAPID study funded by CSL Behring randomized 
93 individuals (83 PiZZ, 2 PiSZ, 2 Z/Null, 6 other) 
to augmentation therapy and 87 to placebo (83 
PiZZ, 0 PiSZ, 1 Z/Null, 3 other)  (NCT00261833).16  
They were followed  for 24 months.  There was no 
difference in the annual rate of lung density loss at 
total lung capacity and functional residual capacity 
combined between the 2 groups.  However, there was 
a significant reduction in annual rate of lung density 

Current Therapies for Alpha-1 
Antitrypsin Deficiency 

loss at total lung capacity in individuals who received 
augmentation therapy (difference 0·74g/L per year 
[95% confidence interval 0·06–1·42], p=0·03) but 
there was no difference at functional residual capacity 
alone (difference 0·48g/L per year [–0·22 to 1·18], 
p=0·18).  The significant benefit in one of the primary 
endpoints is encouraging but it is not clear how a 
difference in change of total lung capacity translates 
to clinical benefit or whether there is a particular 
subgroup that benefits from augmentation therapy.  
The study has resulted in approval for augmentation 
therapy in individuals with AATD by the European 
Medicines Agency.  The United Kingdom National 
Institute for Clinical Excellence will now need to 
decide on the cost-benefit of this therapy and whether 
it represents value for money in the British health care 
system.  This is important as augmentation therapy 
costs approximately $100,000/patient/year.   

End stage lung disease in individuals with AATD 
may be suitable for transplantation.  Indeed, lung 
transplantation for AATD-related emphysema 
accounts for 3.2% of all adult lung transplants and 
10% of all transplants for emphysema.  

There is no specific therapy for the liver disease 
associated with AATD other than conservative 
treatment that is used for all forms of chronic liver 
disease, and where suitable, liver transplantation.  
Transplantation for AATD accounts for 3.5% and 1.1% 
of pediatric and adult liver transplants respectively.

Improved Alpha-1 Antitrypsin Replacement 
Therapy
Several approaches have been adopted to replace 
circulating AAT and therefore, protect against 
progressive emphysema that characterizes AATD. 
These include giving higher doses of intravenous 
AAT (120 rather than 60mg/kg per week), modifying 
recombinant AAT to increase its stability and 
delivering AAT as an inhaled preparation.  The 
inhaled route requires significantly less material to 
inhibit neutrophil elastase but needs to access the 
alveolar space that is destroyed in emphysema.  An 
alternative strategy is to use non-viral gene transfer, 
gamma-retrovirus, recombinant adenovirus (rAd), and 
recombinant adeno-associated virus (rAAV) vectors 

Novel Approaches to the Lung 
Disease Associated with Alpha-1 
Antitrypsin Deficiency 
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to express AAT.  These may be targeted to the lung 
epithelium as well as to hepatocytes, pleural and muscle 
cells. The challenge is to achieve long-term expression 
of large quantities of AAT.  A phase II clinical trial that 
used rAAV vectors achieved only 3%-5% of the target 
level of AAT.17 

Other Treatments for Lung Disease Associated 
with Alpha-1 Antitrypsin Deficiency
Individuals with AATD-related emphysema should 
receive the same therapies as individuals with COPD 
who have normal levels of AAT.  These include: 
inhaled short- and long-acting beta2-agonists, inhaled 
corticosteroids and long-acting anti-cholinergics 
based on patient symptoms, lung function impairment 
and exacerbation frequency. Treatment with macrolide 
antibiotics and roflumilast should be considered for 
patients with frequent exacerbations.  Individuals 
with AATD-related emphysema should also 
receive pulmonary rehabilitation and vaccination 
against pneumococcus and circulating strains of 
influenza. Attempts to regenerate alveoli damaged 
by emphysema with retinoic acid were effective in 
rat models of disease18 but not in a clinical trial in 
humans.19 The most effective therapy for individuals 
with severe airflow obstruction is lung transplantation.  
Younger patients with less comorbidity may have a 
higher benefit (increased survival) from double lung 
rather than single lung transplant. However, the 
supply of organs is limited.  Thus, individuals with 
AATD may be considered for lung volume reduction 
surgery and endobronchial lung volume reduction as 
a bridge to surgery or for those who are not candidates 
for a major operation.  Lung volume reduction surgery 
in individuals with AATD is inferior to that in patients 
with COPD and normal levels of AAT.20,21 There 
appears to be a smaller increase in FEV1 after surgery 
and a shorter duration of benefit.

Endobronchial lung volume reduction is performed 
by one-way valves placed by flexible bronchoscope.  
The data are limited to case series.  The insertion of 
one-way endobronchial valves in 15 individuals with 
AATD resulted in an increase in FEV1 of 54% after 12 
months in 12 of the individuals, quality of life was much 
improved and 2 individuals were taken off oxygen 
therapy.  There was no significant deterioration in lung 
function during the 4-year follow-up.22 However, there 
were complications in 3 of the individuals: 1 developed 
a pneumothorax and had valve displacement and 

subsequent removal, 1 coughed up the valves after 
2 months and 1 developed repeated and severe 
pneumonia and the valves had to be removed.

Modifying Pathways and Proteostasis Networks 
That are Activated by Z Alpha-1 Antitrypsin 
Polymers
A surprising feature of the accumulation of Z AAT 
polymers as inclusions within hepatocytes is that, 
despite marked distortion of the endoplasmic reticulum 
architecture, they do not activate the unfolded protein 
response when expressed in cell models of disease.23-26  
However, they do activate NF-kB proteins and display 
a more marked unfolded protein response when 
stressed with a second hit.24,26 This results from 
AAT polymers increasing the viscosity within the 
endoplasmic reticulum which reduces the mobility of 
chaperones and hence their ability to neutralize the 
effect of a second insult.26 

The findings are different when assessed by gene 
profiling of hepatocytes from a transgenic mouse 
model expressing human Z AAT.27 In this case, there 
was upregulation of genes associated with the unfolded 
protein response and cellular stress genes including 
c-JUN.28 The expression of Z AAT upregulates JNK 
and c-JUN.   Genetic ablation of JNK1 or JNK2 
decreases AAT levels in vivo by reducing c-JUN 
mediated expression of AAT.  Thus, JNK may be a 
therapeutic target for the liver disease associated with 
AATD.  The difficulty is that JNK has pleotropic effects 
and is widely expressed in vivo.  Thus, an inhibitor of 
JNK is likely to have off-target effects.  Nevertheless, 
if validated in other studies, JNK may prove useful 
as a biomarker to develop agents that suppress the 
intracellular polymerization (and accumulation) of Z 
AAT.29

The intracellular polymerization of Z AAT occurs in 
the context of chaperone-mediated folding, proteasomal 
degradation and a cooperative proteostatic network.  
Chemical chaperones such as trimethylamine N-oxide, 
glycerol, erythritol, trehalose, and its breakdown 
product glucose, have been evaluated for their ability 
to stabilize the folding of Z AAT in vitro.30,31 Four-
phenylbutyric acid is effective in increasing the 
secretion of functionally active Z AAT in a cell and 

Novel Approaches to the Liver 
Disease Associated with Alpha-1 
Antitrypsin Deficiency
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animal model of disease32 but was not effective when 
assessed in a clinical trial in individuals with Z AATD.33  
An alternative approach is to target the proteostasis 
network that responds to the expression of Z AAT.  
Defining this network may lead to the identification 
of key “nodes”, signaling pathways and molecules 
that may be manipulated to increase folding of Z AAT 
to the monomeric protein and so facilitate secretion.  
This is illustrated by suberoylanilide hydroxamic acid 
which increases the secretion of Z AAT from epithelial 
cell lines by inhibition of histone deacetylase 7.34 Such 
an approach has yet to be evaluated in animal models 
of disease or in humans.  However, it provides support 
for small molecule or siRNA-based screens of cell lines 
or model organisms (for example in C. elegans and 
drosophila) to identify other pathways that are up or 
down regulated following the expression of Z or other 
mutants of AAT.  These pathways may be targeted for 
pharmacological intervention to reduce intracellular 
inclusions and/or increase the secretion of the mutant 
protein.  

Stimulating Autophagy to Clear Intracellular 
Inclusions
The landmark paper by Hidvegi and colleagues 
demonstrated that the Food and Drug Administration 
(FDA)-approved drug, carbamazepine, can stimulate 
proteasomal and autophagy pathways to clear 
intracellular polymers of AAT.35 Carbamazepine 
is widely usually used to treat epilepsy.  It was 
selected as it stimulates autophagy by a pathway 
that is independent of mTOR (mammalian target 
of rapamycin) and is known to enhance autophagic 
degradation of polyglutamine repeats.  Moreover, the 
safety profile is well known in humans.  Administration 
of large doses of carbamazepine (10-20 times the 
recommended dose for individuals with epilepsy) to 
a transgenic mouse model expressing human Z AAT 
reduced the intrahepatic PAS positive inclusions of Z 
AAT within 2 weeks of therapy and reversed hepatic 
fibrosis.  These findings support the development 
of autophagy enhancers to treat AATD and the 
assessment of carbamazepine in a randomized, 
controlled clinical trial in individuals with severe liver 
disease (NCT01379469).36 In this study, participants 
are started on 400mg/day carbamazepine and the 
dose increased weekly by 200mg/day until a stable 
therapeutic concentration is reached with a dose not 
exceeding 1200mg/day (or 1000mg/day in participants 

less than 15 years of age). The placebo group receives 
encapsulated tablets without carbamazepine. The 
primary endpoint is a significant reduction in the 
hepatic accumulation of Z AAT.

It is uncertain whether the effects will be seen at 
much lower doses of carbamazepine than those used 
in transgenic mice and whether the human liver has 
the same capacity to recover as that of the mouse.   
However, even if the trial is unsuccessful, there is 
impetus to assess other FDA-approved drugs (such as 
lithium and rapamycin) that also stimulate autophagy 
in cell and animal models of disease.37 Rapamycin 
targets mTOR and so may have synergistic properties 
with agents such as carbamazepine and lithium that 
act by pathways that are independent of mTOR.38 

Rapamycin (sirolimus) has been evaluated in the 
transgenic mouse that overexpresses Z AAT.39 Daily 
dosing had no effect on autophagy.  However, weekly 
dosing increased the number of autophagic vacuoles, 
reduced the accumulation of intrahepatic polymerized 
Z AAT and reduced markers of hepatocellular injury 
including hepatic fibrosis and cleavage of caspase 
12.39 An alternative approach is to drive autophagy 
with viral vectors that overexpress the autophagy 
regulator transcription factor EB. This also reduced 
the accumulation of Z AAT, hepatocyte apoptosis 
and fibrosis in the liver of the transgenic mouse that 
expresses Z AAT.40 It also decreased activation of 
hepatic NFκB and IL-6 that drive the expression 
of Z AAT. Both rapamycin and overexpression 
of transcription factor EB reduce the burden of 
intracellular AAT and decrease hepatic fibrosis in 
a mouse model of disease.  The challenge now is to 
demonstrate efficacy of these approaches in humans.

Small Interfering RNA to Silence the 
Expression of Z Alpha-1 Antitrypsin
The most exciting recent therapeutic intervention 
for the liver disease associated with AATD is the 
development of RNA interference- based approaches to 
silence Z AAT synthesis within hepatocytes.41,42 This 
is being led by 2 biotechnology companies: Arrowhead 
Research Corporation and Alnylam Pharmaceuticals, 
Inc.  Small interfering RNA (siRNA) constructs have 
been targeted against hepatocyte mRNA encoding 
human AAT.  The administration of these agents 
reduces soluble and aggregated hepatic AAT and 
circulating levels of AAT in the transgenic mouse model 
of disease.43 siRNA constructs arrest the progression 
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of liver disease in transgenic mice following short-
term treatment and reverse liver disease after long-
term treatment.  Their administration to non-human 
primates reduced circulating levels of normal AAT by 
approximately 80%.  

siRNA therapy for AATD-related liver disease 
has been evaluated in a phase I/II clinical trial 
(NCT02503683).44 This was a randomized, single-
blind, placebo-controlled, single ascending dose 
and multiple dose study that aimed to enroll 66 
participants.  It started in July 2015 and aimed 
to complete in April 2017.  The study assessed 
tolerability, pharmacokinetics and pharmacodynamics 
of subcutaneously administered antisense (ALN) AAT 
in healthy adult participants and individuals with Z 
AATD liver disease.  The primary outcome was the 
safety of siRNA targeting ALN-AAT as assessed by 
the proportion of participants experiencing adverse 
events, serious adverse events, and adverse events 
leading to discontinuation of the study drug.  The 
secondary outcome was the effect of siRNA targeting 
AAT on serum levels of AAT.  Preliminary reports 
suggest that the administration of ALN-AAT caused 
a dose-dependent and durable knockdown of the 
target protein.45 A single dose of ALN-AAT (6mg/kg) 
knocked down up to 88.9% of circulating AAT with 
a mean maximal knockdown of 83.9±2.6%.  Monthly 
treatment resulted in a mean knockdown of serum AAT 
of 75.0±1.2% at approximately 6 months.  However, 
there was liver enzyme elevation at the highest dose in 
3 patients and so the candidate ALN-AAT siRNA has 
been terminated.  A new candidate is being developed.

The multi-center, randomized, placebo-controlled, 
double-blind, single-dose-escalation first-in-human, 
Phase 1 study in healthy volunteers and AATD patients 
to evaluate the Arrowhead siRNA AAT (ARC-AAT) 
enrolled 65 participants but was terminated in January 
2017 (NCT02363946).46  Data presented at the 2016 
Annual Meeting of the American Association for the 
Study of Liver Disease reported that ARC-AAT was 
well tolerated and induced deep and durable reduction 
of the target AAT protein (up to 90%).47  The follow-
up study, an open-label, multi-dose, Phase 2 study 
to determine the safety, tolerability and effect on 
circulating and intrahepatic AAT levels of ARC-AAT 
as evidenced by changes in liver biopsy in patients 
with AATD has been withdrawn (NCT02900183).48  
Further details of this program are awaited.

Small Molecule Approach to Block Intracellular 
Polymerization
AATD results from the retention of polymers of 
mutant AAT within the endoplasmic reticulum of 
hepatocytes.2,4 Polymers form as a result of the Z 
mutation perturbing protein folding, and the structure 
of the folded protein, to form an unstable intermediate 
that we termed M*49 in which β-sheet A opens 2,49  
and the upper part of helix F unwinds.50-52 The loop 
of another molecule inserts into the patent β-sheet 
A to form a loop-sheet dimer, which extends to form 
longer chains of loop-sheet polymers.2,49,53 Ninety-
five percent of severe deficiency of AAT results from 
the Z allele (Glu342Lys) but hepatic inclusions of 
intracellular polymers and profound plasma deficiency 
are also seen in 3 other mutants of AAT: Siiyama 
(Ser53Phe),54 Mmalton (∆Phe52)55 and King’s 
(His334Asp).4 We have shown that this process of 
polymerization also explains the deficiency of the mild 
S (Glu264Val), I (Arg39Cys), Queen’s (Lys154Asn) 
and Baghdad (Ala336Pro) alleles of AAT.52,56-58  
However, the rate of polymer formation is much 
slower in keeping with mild plasma deficiency and the 
absence of liver disease.

Understanding the pathophysiology of AAT 
polymerization has allowed the development of novel 
strategies to block polymerization with the aim of 
curing AATD.  Initial studies showed that peptides 
that are homologous to the reactive centre loop can 
bind to AAT and block polymerisation in vitro.2,59,60 
Smaller peptides were identified that had a similar 
effect but with greater specificity for Z, rather than 
the wildtype M, AAT.61-64 However, it is not clear how 
these peptides can be delivered to hepatocytes in vitro, 
let alone in in vivo.  

An alternative approach is to use our understanding 
of the structural biology of polymers to develop small 
molecules that block polymerization.  The crystal 
structure of AAT identified a hydrophobic pocket 
that is bounded by strand 2A and helices D and E.65 
The cavity is available in the monomeric, native 
protein but is filled by movement of β-sheet A as it 
accepts an exogenous reactive loop peptide during 
polymerization.  Polymer formation was reduced when 
this cavity was filled by the Thr114Phe mutation on 
strand 2 of β-sheet A.  This mutation also increased the 
secretion of Z AAT from a Xenopus oocyte expression 
system.66,67 Virtual ligand screening against this 
cavity identified 66 compounds as potential binders.68 
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Summary
Current respiratory management of individuals with 
AATD involves the routine care offered to all patients 
with COPD along with augmentation therapy.  However, 
augmentation therapy is expensive and the cost-benefit 
ratio, and the decision of which individuals should be 
treated, is not clear.  Some individuals may benefit from 
lung volume reduction surgery and the placement of 
endobronchial valves although the benefit from lung 
volume reduction surgery may be short-lived and 
there is relatively little data on long-term outcomes 
following valve placement.  The management of the 
liver disease associated with AATD is currently limited 
to supportive measures.  However, there is real promise 
with the development of siRNA technology and agents 

Some of these blocked polymerization in vitro and 
in cell models that express Z AAT.68 This proof of 
principle resulted in a “Discovery Partnership with 
Academia” partnership with GlaxoSmithKline to 
develop small molecules that are effective in blocking 
polymerization as an approach to treating AATD.69  

Intrabodies as a Strategy to Block Intracellular 
Polymerization and Increase Secretion of Z 
Alpha-1 Antitrypsin
Monoclonal antibody technology has allowed the 
identification of antibodies that detect the polymeric4 
and latent70  conformers of AAT and antibodies that 
can block71 and accelerate72  polymer formation.  
The 4B12 monoclonal antibody blocked AAT 
polymerization at a 1:1 molar ratio in vitro by binding 
to an epitope that encompasses residues Glu32, 
Glu39 and His43 on helix A and Leu306 on helix 
I.73 This antibody identified a region that may be 
targeted for the rational design of ligands that can 
dynamically influence AAT polymerization.  Moreover, 
the expression of a single chain-variable-fragment 
intrabody of mAb4B12 reduced the intracellular 
polymerization of Z AAT by 60% and increased the 
secretion of Z AAT that retained inhibitory activity 
against neutrophil elastase.71 This demonstrates that 
monoclonal antibodies can block the transition of 
Z AAT to aberrant polymers without compromising 
inhibitory activity of the protein.

Cell Therapy for Alpha-1 Antitrypsin Deficiency 
Hepatocytes that express wildtype AAT have a 
competitive advantage over cells that express the 
Z protein.  Wild-type donor hepatocytes replaced 
20%-98% of host hepatocytes in transgenic mice 
expressing human Z AAT.74 Repopulation was 
accelerated by injection of an adenovirus vector 
expressing hepatocyte growth factor but spontaneous 
repopulation with engrafted hepatocytes occurred in 
the transgenic mice even in the absence of severe liver 
injury. Donor cells replaced both globule-containing 
and globule-devoid cells, indicating that both types 
of host hepatocytes have impaired proliferation 
relative to wildtype hepatocytes. These results suggest 
that wildtype hepatocyte transplantation may be 
therapeutic for individuals with Z AAT liver disease.

Dermal fibroblasts have been isolated from 
individuals with AATD and used to generate patient-
specific human-induced pluripotent stem cell 

(hIPSCs) lines.  These hIPSC lines were differentiated 
into hepatocyte-like cells using a novel and simple 
3-step differentiation protocol in chemically-defined 
conditions. The patient-specific hIPSC derived 
hepatocytes recapitulate protein misfolding and the 
formation of pathological polymers that characterize 
AATD.75,76 They were also used in a proof of concept 
study to show that the combination of engineered 
Zinc finger nucleases and a piggyBac donor vector 
gene editing technique can be used to restore 
normal structure, function and secretion of AAT 
in subsequently derived liver cells.77 The derived 
hepatocytes secreted AAT when introduced into 
a mouse model of liver injury.77 The challenge is to 
obtain cells that are more like the fully-differentiated 
hepatocyte and which are safe to use in humans.  

More recently Baligar and colleagues78 showed 
that the intra-splenic injection of LSK cells (Lineage 
negative, Sca-1 positive, C-Kit negative) into the 
transgenic mouse model of AATD could reduce the 
numbers of AAT globule-containing hepatocytes 
in the recipient liver. This cell therapy improved 
proliferation of host globule-devoid hepatocytes 
and donor derived cells and partially improved liver 
pathology as assessed by inflammatory response, 
fibrosis and apoptotic hepatocyte death.   The findings 
suggest transplantation of allogeneic bone marrow 
derived stromal cells may be an effective therapy for 
individuals with AATD.  If correct, then this offers the 
potential to recover normal levels of secreted AAT 
and thereby, simultaneously treat the associated lung 
disease.
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that block the formation of polymers or stimulate 
pathways that accelerate their clearance.
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