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Reactive oxygen and nitrogen species can be generated endogenously (by mitochondria, peroxisomes, and 
phagocytic cells) and exogenously (by pollutions, UV exposure, xenobiotic compounds, and cigarette smoke). 
The negative effects of free radicals are neutralized by antioxidant molecules synthesized in our body, like 
glutathione, uric acid, or ubiquinone, and those obtained from the diet, such as vitamins C, E, and A, and 
flavonoids. Different microelements like selenium and zinc have no antioxidant action themselves but are 
required for the activity of many antioxidant enzymes. Furthermore, circulating blood proteins are suggested to 
account for more than 50% of the combined antioxidant effects of urate, ascorbate, and vitamin E. Antioxidants 
together constitute a mutually supportive defense against reactive oxygen and nitrogen species to maintain the 
oxidant/antioxidant balance. This article outlines the oxidative and anti-oxidative molecules involved in the 
pathogenesis of chronic obstructive lung disease. The role of albumin and alpha-1 antitrypsin in antioxidant 
defense is also discussed.
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Cellular respiration consists of 3 main processes— 
glycolysis, the citric acid cycle, and oxidative 
phosphorylation—which require free oxygen. The 
conversion of oxygen (O2) into cellular energy involves 
its reduction to H2O by accepting 4 electrons. Oxygen 
by itself has low reactivity; however, it can undergo a 
series of one electron reductions and produce reactive 
intermediates. Approximately 5% of the inhaled O2 
is converted to reactive oxygen molecules with an 
unpaired number of electrons such as hydroxyl (OH·), 
superoxide anion (O2-·), hydrogen peroxide (H2O2), 
oxygen singlet (O2), hypochlorite (OCI-), nitric oxide 
(NO), and peroxynitrite (ONOO-) radicals.1 The 

Reactive Oxygen Species
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external sources of  reactive oxygen species (ROS) are 
cigarette smoke, environmental pollutants, radiation, 
certain drugs, pesticides, industrial solvents, and 
ozone. The endogenous sources of oxidants include 
cellular systems localized on the plasma membrane, 
in the cytosol, in the peroxisomes, and on membranes 
of mitochondria and endoplasmic reticulum.2 The 
main sources of cellular ROS are mitochondria 
and nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidases, and peroxisomes containing 
xanthine oxidase and the inducible form of nitric 
oxide synthase, which produce superoxide anion and 
nitric oxide, respectively.3 In addition, the activation 
of phagocyte heme peroxidases, like myeloperoxidase, 
results in the formation of the potent oxidants. 
Cellular thiols, hydroquinones and catecholamines 
can undergo redox reactions and contribute to 
intracellular ROS production as well. Pathogens, such 
as Pseudomonas aeruginosa that release pyocyanin, 
a nitrogen-containing aromatic compound, can 
also increase intracellular levels of superoxide and 
hydrogen peroxide.4 

The chemically reactive radicals are generated 
internally by oxidant enzymes, phagocytic cells, 
arachidonate pathways, and exercise. Low levels of 
ROS play essential roles in microbe killing and act 
as secondary messengers for intracellular signaling 
pathways involved in host immune responses.5,6 For 
example, free radicals play a role in detoxification 
of xenobiotics by oxidizing enzymes, in killing of 
microorganisms by macrophages and cytotoxic 
lymphocytes, and in the generation of prostaglandins 
and leukotrienes, which activate oxygenases (e.g., 
cyclooxygenases and lipoxygenase) and thus act as 
modulators of the inflammatory response. 

Among the ROS, hydroxyl is the most reactive 
radical, which reacts with lipids, proteins, nucleic 
acids, and carbohydrates. The hydroxyl radical induces 
the formation of DNA-protein cross-links, single- 
and double-stranded breaks, lipid peroxidation, and 
protein fragmentation.7 For example, polyunsaturated 
fatty acids are among the most susceptible targets of 
hydroxyl radicals.8 

Nitric oxide (NO·) normally activates soluble 
guanylate cyclase, to act as a neurotransmitter and 
blood pressure regulator. Nitric oxide also plays a role 
in iron trafficking because it mimics the consequences 
of iron starvation and triggers iron uptake by cells.9 
During pathological states, reaction between nitric 

oxide and superoxide can generate highly reactive 
peroxynitrite (ONOO-) radicals, which are implicated 
in lipid peroxidation. Another damaging nitrogen 
radical, nitrogen dioxide (NO2), is formed during 
atmospheric dioxide pollution and cigarette smoking.10 
NO and its by-products, such as nitrate (NO3-), nitrite 
(NO2-), peroxynitrite (ONOO-), and 3-nitrotyrosine 
are called reactive nitrogen species (RNS). The RNS 
play a role in cellular signaling, vasodilatation, and 
immune response.11

Lungs are particularly vulnerable to oxidative stress 
due to the high oxygen environment and exposure to 
environmental pathogens and oxidants. For example, 
a single puff of cigarette smoke estimated to have 
about 1 × 1015 oxidant molecules.12 Smoking and 
air pollution are the most significant risk factors 
for chronic obstructive pulmonary disease (COPD) 
development, which attribute to oxidative and carbonyl 
stress.13 The increased burden of reactive oxidants 
in patients with COPD also derives from leukocytes 
and macrophages involved in the inflammatory 
process in the lungs.14 The ROS and RNS can cause 
oxidative damage to DNA, lipids, carbohydrates and 
proteins, and thereby mediate an array of downstream 
processes that contribute to the development and 
progression of COPD. They also activate resident cells 
in the lung, particularly epithelial cells and alveolar 
macrophages, to generate chemotactic molecules that 
recruit neutrophils, monocytes and lymphocytes into 
the lung.15 Collectively, these events lead to a vicious 
cycle of persistent inflammation and chronic oxidative 
stress, which results in protease-anti-protease 
imbalance, defects in tissue repair mechanisms, 
accelerated apoptosis in lung cells and progression of 
COPD.16

Dysregulated mitochondrial ROS production is a 
feature of smokers with COPD17,18  that is not limited 
to the lungs. For example, Belchamber et al reported 
mitochondrial dysfunction in COPD macrophages.19 
Other studies found that mitochondrial-targeted 
antioxidant treatment reduces proliferation and 
cytokine production of airway smooth muscle cells of 
patients with COPD.20  Oxidative stress involved in 
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pathogenesis of COPD is not just the result of increased 
burden of oxidants but also a decreased anti-oxidative 
potential.21 

To protect human cells and organ systems against 
free radicals, a complex antioxidant system exists. 
Dietary and endogenous enzymatic and nonenzymatic 
antioxidants counteract the damaging effects of free 
radicals by various mechanisms, such as electron 
donation, catalytic removal, or binding radicals and/or 
gene expression regulation.22 Together, antioxidants 
constitute an integrated defense against ROS 
(Figure 1). Only when the production of free radicals 
overwhelms the antioxidant defense and the oxidant/
antioxidant imbalance shifts in favor of oxidants, does 
oxidative stress develop. 

Oxidative stress is a part of many acute and chronic 
pathological processes in respiratory, cardiovascular, 
kidney, neurodegenerative, and biliary diseases, as 
well as in cancer. Oxidative stress is also associated 
with cellular senescence and aging.23 Age-related 
oxidative stress affects the nervous, endocrine, and 
immune systems and may create a vicious cycle 
involving chronic oxidative stress and inflammation, 
which support each other, and increase age-related 
morbidity and mortality.24

Antioxidants and Oxidative Stress 

Vitamins and Minerals
Fruits and vegetables contain antioxidant vitamins, 
including vitamin C, vitamin E, and pro-vitamin 
A carotenoids, activities of which have been well-
studied. Antioxidant vitamins are present on the cell 
membrane, intracellularly, or extracellularly, and react 
with free radicals to either remove or inhibit them.25 
Vitamin E is the major peroxyl radical scavenger,26 
whereas carotenoids quench singlet oxygen and 
inhibit lipid peroxidation.27 Vitamin C acts as a ROS 
scavenger and thus can rescue vitamin E, which is 
anchored in the cell membrane and prevents lipid 
peroxidation.28,29 Koike et al reported that treatment 
with vitamin C prevented cigarette smoke-induced 
emphysema and restored lung tissue damage in 
protein-30 knockout (SMP30-KO) mice characterized 
by  accelerated aging.30 

Selenium, copper, manganese, and zinc are 
considered antioxidant minerals because they are 
required for the activity of antioxidant enzymes. 
For example, selenium is required for the activity of 
glutathione peroxidases, which are scavengers of 
hydrogen peroxide in subcellular compartments.31 
Notably, lower levels of serum selenium were reported 
in an elderly Swedish population relative to other 
European regions. Furthermore, people in the lowest 
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selenium quartile (< 57.2 μg/L) were found to have an 
increased mortality, suggesting the value of selenium 
supplementation.32

Zinc acts as a cofactor for enzymes of the antioxidant 
system, and inhibits the enzyme, nicotinamide adenine 
dinucleotide phosphate oxidase, a prooxidant enzyme, 
and induces metallothionein synthesis, which is 
important in the reduction of hydroxyl radicals.33 

Manganese (Mn) is one of the required components 
for Mn superoxide dismutase (MnSOD), which is 
responsible for scavenging ROS during mitochondrial 
oxidative stress. In addition, Mn is involved in the 
synthesis and activation of many enzymes and in the 
regulation of glucose and lipid metabolism.34 It is 
important to note that the antioxidant properties of Mn 
are outcompeted by cellular iron binding to MnSOD, 
so iron may counteract the benefits of manganese 
antioxidants.35 Because a number of bacterial proteins 
are Mn dependent, host-mediated Mn sequestration 
has the potential to disrupt bacterial pathogenesis.36

The Effects of Dietary Vitamins and Minerals on 
Lung Function
Numerous experimental and epidemiological 
studies have supported the importance of vitamins 
and antioxidants in the prevention of inflammatory 
diseases, including COPD. Data from the cross-
sectional MORGEN study, (the monitoring project on 
risk factors and health in the Netherlands) in a sample 
of 6555 adults in the Dutch population, showed that 
the intake of vitamin C and beta-carotene, but not 
vitamin E, had a positive effect on lung function, but 
had no effect on respiratory symptoms.37 A prospective 
cohort study in the United Kingdom confirmed that 
a high dietary intake of vitamin C or foods rich in 
this vitamin reduced the rate of lung function loss 
and thereby prevented development of COPD.38 
Another 3-year study showed an improvement in lung 
function in a group of COPD patients consuming 
higher amounts of fruits and vegetables.39 In a similar 
manner, a study based on a random sample of adults 
from 3 European countries concluded that the intake 
of fruits, and particularly tomatoes, delayed declines 
in lung function.40 Tomatoes are very rich sources of 
lycopene, a carotenoid without vitamin A activity,41 
which is believed to be responsible for the observed 
beneficial effects of tomatoes. 

Broccoli is a vegetable having a high content of 
bioactive phytochemicals, such as glucosinolates, 

phenolic compounds, vitamin C, and minerals.42 
For example, extract of sulforaphane, a sulfur-rich 
compound found in broccoli, has been shown to 
increase nuclear factor erythroid-2-related factor 
2 (Nrf2) and its regulated antioxidants in upper 
airways, and to improve the ability of macrophages 
to remove bacteria.43 Several studies reported that 
Nrf2 and its transcriptional activity decline with 
increasing COPD severity44-46 allowing for the 
hypothesis that sulforaphane may decrease oxidative 
stress and inflammation in COPD patients. To test 
this hypothesis, the randomized, placebo-controlled 
clinical trial of sulforaphane supplementation in 
patients with COPD for four weeks at doses of 25 and 
150 μM was initiated.  Unfortunately, this therapy had 
no effect on the expression of Nrf2, and other anti-
oxidants or markers of inflammation.47 

Chalcones (1,2-diphenyl-2-propen-1-one) belonging 
to the flavonoid family, such as isoliquiritigenin 
(licorice roots) and xanthohumol (hops), have been 
shown to decrease pulmonary inflammation caused by 
lipopolysaccharide (LPS).48 However, no studies have 
been reported in COPD patients.

It is also important to mention, that the Beta-Carotene 
and Retinol Efficacy Trial (CARET) tested daily intake 
of the combination of 30 mg beta-carotene and 25,000 
IU vitamin A against placebo in 18,314 men and 
women. However, the CARET trial was terminated 
because of substantial evidence of harm; there were 
28% more lung cancers and 17% more deaths in the 
active intervention group.49 On the other hand, a 
population-based cross-sectional study including 
21,148 Korean adults showed that participants with 
the highest intake of vitamin A, beta-carotene, and 
vitamin C had a significantly higher forced expiratory 
volume in 1 second (FEV1) than those with the lowest 
intake.50 

A number of studies suggest that levels of specific 
microelements like selenium, manganese, and zinc 
are altered in patients with COPD.51-53 For example, 
some studies have shown that there is no effect 
of selenium on COPD,54 although other studies 
reported that selenium had therapeutic benefits. 
Indeed, COPD patients with acute upper respiratory 
tract infections receiving selenium with zinc, vitamin 
C, and Echinacea Purpurea showed less severe and 
shorter exacerbation episodes when compared with 
the placebo group.55 According to another study, 
intravenous administration of selenium with zinc 
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and manganese significantly reduced the time COPD 
patients spent on mechanical ventilation.53  Likewise, 
a study based on data from 18,162 individuals has 
shown a direct relationship between serum levels of 
selenium and FEV1 in smokers.56 

Taken together, the above-mentioned studies 
suggested that a high intake of fruits and vegetables 
rich in antioxidants is beneficial for the respiratory 
system and favorable for patients with COPD. 
However, future prospective randomized, controlled 
trials are needed to explore the role of natural bioactive 
compounds as well as their supplements on health 
status, lung function and risk of COPD development.

All cells contain antioxidant systems that specifically 
detoxify superoxide or hydrogen peroxide or contribute 
to the defense against ROS (Figure 2). Many antioxidant 
responses are controlled by the Nrf2, an evolutionary 
conserved transcription factor that is sequestered 
under basal conditions but upregulated acutely during 
oxidant attack. When activated, Nrf2 disassociates 
from its repressor protein KEAP1 that reacts with 
oxidative radicals, translocates to the nucleus, binds 
to antioxidant response element and induces the 
transcription of defensive genes. As mentioned above, 
decreased Nrf2 expression and protein levels, and 
concomitantly, a lower activity of antioxidant defense, 
are found in tissues from COPD patients.

Endogenous Antioxidants

Enzymatic antioxidants function by converting 
oxidized metabolic products in a multi-step process to 
hydrogen peroxide and then to water using cofactors 
such as iron, zinc, copper, and manganese. Hydrogen 
peroxide may also be converted to the potent oxidant 
hypochlorous acid in the presence of the chloride ion. 
This transformation is catalyzed by myeloperoxidase 
(Figure 2).

Myeloperoxidase
Myeloperoxidase (MPO) is an iron-containing enzyme 
with antimicrobial activity carried by neutrophil 
azurophilic granules. Among the antimicrobial agents, 
MPO is the most abundant and constitutes about 25% of 
the azurophilic granular proteins.6 MPO uses peroxide 
as a substrate via peroxidation or chlorination reaction 

Enzymatic Antioxidants

to produce hypochloric acid and other toxic substances 
that can kill different types of pathogens. Individuals 
deficient in MPO have an increased risk of infections 
and inflammatory diseases.57 Despite the beneficial 
anti-inflammatory effects of MPO, its excessive activity 
may cause protein nitrosylation, lipid peroxidation and 
tissue damage.58,59 In fact, levels of MPO in sputum 
and bronchoalveolar lavage are much greater in COPD 
patients than in controls.60,61 Moreover, MPO levels 
are elevated during exacerbations of COPD.62-64

The inhibition of MPO has been studied in a 
cigarette smoke-induced emphysema model, in guinea 
pigs.  Animals treated with the MPO inhibitor showed 
protection against morphologic changes characteristic 
of emphysema.65 However, the potential consequences 
of chronic MPO inhibition in patients with COPD are 
unknown.

Superoxide Dismutases 
Superoxide dismutases (SODs) are universal enzymes 
of aerobic organisms, which control the levels of 
reactive oxygen and nitrogen species by catalyzing 
the dismutation of superoxide to hydrogen peroxide 
and oxygen. Three isoforms of SOD exist: cytoplasmic 
Cu-ZnSOD (SOD1), mitochondrial MnSOD (SOD2), 
and extracellular Cu-ZnSOD3. The presence of 
specific SOD isoforms supports the importance of 
maintaining redox homeostasis between cellular 
compartments. The changes in SOD activity in a 
particular compartment may lead to the generation of 
a hydrogen peroxide concentration gradient and the 
subsequent activation of redox sensitive pathways.66 

SOD1 is constitutively expressed and it is abundant 
in bronchial and alveolar epithelial cells, fibroblasts, 
and capillary endothelial cells.67 In contrast to SOD1, 
SOD2 is inducible by oxidative stress, hyperoxia, 
environmental pollutants such as cigarette smoke 
or ozone, and by inflammatory cytokines. Similar 
to SOD1, SOD2 expression is lower in lung tissue 
compared to other major organs; its expression is the 
highest in alveolar type II cells.68 

Because SOD3 modulates O2·- levels in the 
vasculature, this SOD is linked to pathological 
conditions involving vascular dysfunctions. 
Polymorphisms in the SOD3 gene have been linked 
to type 2 diabetes, ischemic heart disease, acute 
lung injury and COPD.69  Through a direct binding 
property, SOD3 protects hyaluronic acid against 
oxidative fragmentation in models of asbestos-
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induced lung injury and cigarette smoke-induced 
emphysema.70,71 Moreover, experimental data have 
shown that SOD3 modulates neutrophil recruitment 
and function.72 

Superoxide dismutase is also known to help carry 
NO into hair follicles. While the NO relaxes the blood 
vessels and allows more blood to circulate to the hair 
follicles, SOD helps to remove the free radicals. This is 
beneficial for people who are experiencing premature 
hair loss.73 

Catalase
Catalase is a heme moiety-containing enzyme located 
in peroxisomes and responsible for the conversion of 
hydrogen peroxide molecules to oxygen and water. It 

is an extremely efficient enzyme because one catalase 
molecule can convert millions of hydrogen peroxide 
molecules each second.74 Because of this property, 
catalase is used in facial mask treatments combining 
catalase with hydrogen peroxide with the intent of 
increasing cellular oxygenation in the upper layers 
of the facial epidermis. This treatment is expected 
to lower oxidative stress, DNA damage, malignant 
transformation, and to protect against age-associated 
skin oxidative damage.75

In the lungs, catalase is expressed during the later 
stages of development and becomes constitutively 
expressed in airway and alveolar epithelial cells.76 A 
decrease in catalase activity is observed in patients 
with asthma77 and in smokers with COPD.78 The 
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overall biological role of catalase in pulmonary diseases 
remains unclear. For example, some studies suggest 
that inhibition of catalase might be a beneficial therapy 
for acute lung injury because this would preserve an 
effect of hydrogen peroxide on neutrophil phagocytic 
ability.79 

Glutathione Peroxidases
The family of glutathione peroxidases (GPXs) consists 
of 8 isoforms, and 4 of these are expressed in the lung. 
The GPXs mediate the same reaction as catalase, 
namely, the recycling of hydrogen peroxide into water. 
However, these 2 enzymes have specific characteristics. 
As previously mentioned, catalase is an enzyme 
located in peroxisomes, and is activated when cellular 
peroxide concentrations exceed physiological levels. 
In contrast, the GPXs are involved in the physiological 
adjustment of peroxide concentrations in the 
intracellular and extracellular compartments, and are 
more versatile, so they can also act as scavengers and 
as repair enzymes. In addition, peroxide GPXs can also 
recycle peroxidized free polyunsaturated fatty acids 
and phospholipid hydroperoxides.80

It has been assumed that GPX1 is responsible for 
approximately 95% of the overall GPX activity in 
lung tissue.81 GPX1 deficient mice develop normally 
but are more susceptible to lung inflammation by 
influenza infection or cigarette smoke exposure.82,83 
GPX1 is shown to promote proinflammatory 
cytokine production and neutrophilia in response to 
endotoxin,84 and to contribute to the development of 
ovalbumin-induced allergic asthma.85

GPX2 is poorly expressed in healthy lungs, whereas 
GPX2 markedly increases in the airway epithelium 
in response to cigarette smoke exposure and 
inflammation.86,87 GPX3 was first identified in plasma 
and was found to be expressed by bronchial epithelial 
cells and alveolar macrophages.88,89 Different 
studies support a major role of GPX3 in extracellular 
antioxidant defense within the airway lumen. GPX4 
is also known as phospholipid hydroperoxide and 
exists as cytosolic, mitochondrial, and nuclear 
isoforms.90 GPX4 is primarily involved in oxidative 
lipid metabolism,91 although the role of GPX4 in lung 
pathophysiology remains unclear. 

A study by Vibhuti et al reported reduced levels of 
glutathione and low activities of catalase and GXP in 
COPD patients.92 However, this observation remains 
to be replicated by other studies. 

Peroxiredoxins 
Peroxiredoxins (Prxs) comprise a family of 6 
mammalian cysteine-dependent peroxidase enzymes 
that are major regulators of the cellular redox 
environment, and impact protein cysteine oxidation. 
Over the past years, Prxs have become recognized not 
only as oxidative stress defense enzymes but also as 
regulators of phospholipid homeostasis.93,94 Despite 
the knowledge that redox perturbations accompany 
pulmonary diseases like cancer, pulmonary fibrosis, 
and acute lung injury, little is known about the role of 
Prxs in the etiology of these diseases.95

The nonenzymatic antioxidants are characterized by 
their ability to intercept and terminate free radical 
chain reactions, and inactivate radicals and oxidants.96 
The major endogenous nonenzymatic low-molecular-
mass antioxidants include N-acetylcysteine, 
glutathione, uric acid, melatonin, coenzyme Q and 
others. Among contributors to the antioxidant defense 
system are also human blood proteins like albumin, 
ferritin, transferrin, haptoglobin and ceruloplasmin. 
For example, ceruloplasmin is a copper-containing 
ferroxidase that possesses ferroxidase and antioxidant 
activity, and inhibits iron-and copper-dependent lipid 
peroxidation and scavenging peroxide and superoxide 
anions.97 Moreover, ceruloplasmin is a physiologic 
inhibitor of MPO,98 a neutrophil enzyme that promotes 
oxidative stress in COPD. The antioxidant properties 
of serum albumin will be discussed in the following 
chapter. 

N-acetylcysteine
N-acetylcysteine (NAC) possesses direct and 
indirect antioxidant properties. The free thiol group 
of NAC can directly interact with ROS to form NAC 
disulphide.99,100 However, as a glutathione precursor, 
NAC can exert an indirect antioxidant effect.

Both in vitro and in vivo studies have confirmed 
the protection of the alveolar epithelium from oxygen 
radical toxicity by treatment with NAC.101 Data on 
the NAC effects in COPD suggest that NAC reduces 
elastase activity,99 hinders the loss of pulmonary 
glutathione, abolishes the effects of cigarette smoke, 
prevents thickening of the airway wall, and reduces 
the risk of exacerbations.102 The results of clinical 
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trials support the usefulness of oral administration 
of NAC, generally 600 mg/day, in chronic bronchitis 
and COPD patients to prevent exacerbations.103,104 
Long-term therapy with NAC may reduce the risk of 
COPD exacerbation.105 Nevertheless, the available 
evidence is insufficient to recommend the routine use 
of NAC for the treatment of stable COPD patients.106 
However, because of its antioxidant properties, NAC 
might be a potential add-on therapy in COPD patients. 

Glutathione
Glutathione (GSH) is a low molecular weight thiol 
tripeptide (γ-glutamyl-cysteinyl-glycine) abundant 
in almost all cellular compartments (in the nucleus, 
mitochondria, and cytoplasm). In humans, GSH is 
present in a high concentration (1-10 mM)107 and it is 
involved in cell differentiation, senescence and death, 
detoxification of xenobiotics, regulation of enzymatic 
activity, and synthesis of proteins and nucleotides.108  
As an antioxidant, GSH reduces ROS during the 
enzymatic and nonenzymatic reactions. It regenerates 
other oxidized antioxidants like vitamin C and vitamin 
E, is involved in the repair of peroxidized lipids and 
in the maintenance of sulfhydryl moieties of proteins 
in the reduced form. GSH functions in conjunction 
with 3e groups of enzymes glutathione peroxidase, 
glutathione reductase, and glutathione oxidase.

GSH homeostasis is regulated by its de novo 
synthesis but also by recycling and cellular export. The 
rate-limiting step in the de novo synthesis of the GSH 
is catalyzed by gamma-glutamyl-cysteine synthetase 
(also known as glutamine-cysteine ligase), which 
is a target gene of Nrf2109  The Nrf2 coordinates 
the basal and stress-inducible activation of the 
glutamate-cysteine ligase complex110 and regulates 
the transcription of glutathione peroxidase 2 and 
glutathione S-transferases.111 

The antioxidant function of GSH is accomplished 
mainly by GSH peroxidase reactions, which reduce 
hydrogen peroxide and lipid peroxide.112 When 
GSH is oxidized, it forms GSH disulphide, which 
can be reduced again to GSH with the help of 
glutathione reductases, another Nrf2 targets, in an 
NADPH-dependent manner.113 Thus, through the 
coordinated activation of GSH production, utilization, 
and regeneration, Nrf2 ensures maintenance of the 
intracellular levels of reduced GSH.114 

The key role of GSH as an antioxidant is 
demonstrated by the experimental depletion of GSH 

using buthionine sulfoximine, an inhibitor of GSH 
synthesis. This depletion of GSH results in a worsening 
effect in many disease models. Conversely, recovering 
GSH levels with precursors of its synthesis, such as 
N-acetyl-cysteine or 2-oxothiazolidine-4-carboxylic 
acid, increase the protective effects.115

Glutathione deficiency is associated with chronic 
bronchitis, COPD, cystic fibrosis, idiopathic pulmonary 
fibrosis, bacterial and viral infections, and toxicity of 
various foreign compounds (smoke, pollutants, and 
drugs).116 However, clinical studies using GSH as a 
therapeutic agent have shown mixed results. In the 
older study, when GSH (600 mg twice daily for 3 days) 
was given by aerosol to 10 patients with idiopathic 
pulmonary fibrosis, a rise in epithelial lining fluid GSH 
and reduced superoxide release from macrophages 
was detected.117 Noticeably, GSH inhalation is not 
recommended for lung cancer patients because 
GSH may reduce cytotoxicity to chemotherapeutic 
compounds and repair drug-induced injury at the 
DNA level. For example, GSH was found to detoxify 
or inactivate platinum drugs, commonly used for the 
treatment of advanced stage lung cancer patients116 
Moreover, in a trial of 8 asthmatic patients who 
received nebulized GSH (600 mg with 4 ml of 0.9% 
sodium chloride) one week apart, adverse effects, such 
as bronchoconstriction, have occurred. Researchers 
assumed that this was probably due to the sulphite 
formation in the nebulized solution and/or the 
metabolism of GSH into leukotrienes, potent pro-
inflammatory bronchoconstrictors.118 Taken together, 
GSH treatment might be capable of providing 
antioxidant protection to both the upper and lower 
respiratory airways however, additional research 
studies are necessary. So far, GSH is not recommended 
as a potential treatment for COPD and emphysema 
patients.119

Coenzyme Q10
Coenzyme Q (CoQ) is a benzoquinone derivative 
localized in the mitochondrial respiratory chain as well 
as in other internal membranes. The CoQ provides 
antioxidant protection to cell membranes and plasma 
lipoproteins.120 

A significant reduction in the rate of CoQ 
biosynthesis occurs during aging and age-associated 
diseases.121-124 In patients with COPD, dietary 
supplementation with CoQ10 seems to improve 
functional performance and dyspnea.125 
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A recent meta-analysis summarized the efficacy 
of CoQ10 in patients with pathologies, in which 
inflammation is a common factor, like cardio-
cerebral vascular disease, multiple sclerosis, obesity, 
renal failure, rheumatoid arthritis, diabetes, and 
fatty liver disease.126 Administration of CoQ10 in 
doses ranging from 60mg–500 mg/day significantly 
decreased production of inflammatory markers.126 
Nevertheless, further experimental studies and clinical 
trials involving a greater number of participants are 
needed to definitively assess the benefits of CoQ10 
treatment.127

Uric Acid
Uric acid (UA) is an intermediate product of the purine 
degradation pathway and provides approximately 
60% of free radical scavenging capacity in plasma.128 
Although the antioxidant effect of UA might have 
therapeutic benefits, high plasma concentrations of UA 
have been associated with obesity, insulin resistance, 
and hyperuricemia.129,130 It is possible that increases 
in circulating levels of UA reflect a protective response 
against oxidative stress that is linked to obesity-
associated metabolic syndrome. Several studies have 
indicated a role of UA in exacerbations and lung 
function, and in the physical capacity of patients with 
COPD.131,132

Melatonin
Melatonin (N-acetyl-5-methoxytryptamine) is an 
endogenous hormone derived from tryptophan 
that is mainly released from the pineal gland in 
the dark. Melatonin expresses anti-inflammatory 
and antioxidant properties, and regulates different 
biological functions such as sleep, circadian rhythm, 
immunity, reproduction and blood pressure control.133 
Melatonin protects lipids, proteins, and nuclear DNA 
from oxidative damage.134

Melatonin is not only endogenously generated but 
it is also widely available in fruits and vegetables. 
Numerous in vivo studies testing high doses of 
melatonin reported extremely low toxicities.135 
Torres et al found that melatonin decreases the 
levels of oxidative stress markers and increased both 
enzymatic and nonenzymatic antioxidant capacities 
in the lung.136 Melatonin is also used to treat sleep 
disturbances and insomnias caused by aging, as well 
as pathological conditions including COPD.137

Human blood proteins are vulnerable to oxidative 
damage because free radicals can cause alterations 
in the electrical charge of proteins, induce cross-
linking of proteins, and increase their susceptibility to 
proteolysis.138 Proteins that have metals at their active 
sites are sensitive to metal catalyzed oxidation.139 
Oxidation can generate protein hydroperoxides, which 
generate additional radicals upon interactions with 
metal ions. Some oxidized proteins become functionally 
inactive and are rapidly removed; others can gain 
novel biological activities and thereby contribute to 
the various pathophysiological processes.140 

Specific blood proteins like albumin, ceruloplasmin, 
metallothionein, ferritin, myoglobin, transferrin, 
alpha-1-acid glycoprotein, and haptoglobin, may act 
as antioxidants. It has been proposed that proteins 
account for more than half of the antioxidant capacity 
in blood.141

Blood Proteins as Antioxidants

Human serum albumin (HSA) is the main extracellular 
protein maintaining the plasma redox state.142 The 
sulphur-containing residues, methionine and cysteine, 
account for 40%–80% of the total antioxidant activity 
of HSA.143

Albumin is well known for its binding of various 
molecules; therefore, antioxidant activity may result 
from its ability to bind bilirubin, homocysteine, 
and lipids. For example, the binding of HSA to 
polyunsaturated fatty acids and sterols may prevent 
lipid peroxidation.144

Based on estimates, under physiological conditions, 
one-third of the HSA exists as disulfides mixed with 
cysteine, homocysteine, or glutathione (HSA-S-S-R), 
whereas the rest of the HSA is in a reduced form with 
a free thiol in the Cys-34 residue (HSA-SH).145 Under 
oxidative stress, Cys34 thiol shifts to a sulfenic acid 
(HSA-SOH), which can be irreversibly oxidized to 
the sulfinic (HSA-SO2H) and sulfonic (HSA-SO3H) 
acids or, through the reactions with glutathione, can 
be returned to the HSA-SH reduced form.146 Thus, 
an outcome of the oxidative process may depend on 
whether the sulfenic acid is further oxidized, or whether 
it is reduced, leading to the initial HSA-SH (Figure 3).

During pathological conditions like diabetes, COPD, 

Human Serum Albumin
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and kidney disease, structural modifications of HSA 
induced by glucose or acrolein can strongly impair its 
antioxidant properties.147

Alpha-1 antitrypsin (AAT) is viewed as a key inhibitor 
of serine proteases, specifically, neutrophil elastase 
and proteinase 3. However, numerous studies have 
shown that, aside from its anti-protease properties, 
AAT has anti-inflammatory and immune regulatory 
functions, and some of these functions seem to 
be independent of the anti-protease activities.

Similar to albumin, AAT has exposed methionine 
(Met) residues and a free cysteine at the position 
232, which can be attacked by oxidants.148,149 The 
Met-358 is at the “P1 position,” which is located 
in the reactive site, and determines anti-protease 
activity of AAT. Therefore, oxidative change of this 
Met into methionine sulfoxide inactivates AAT as a 
serine protease inhibitor.150 Carp et al  reported that 
AAT isolated from bronchoalveolar lavage fluid of 
smokers contains 4 oxidized Met residues with loss of 
40% of anti-protease activity.151 Other investigators 
suggested that inactivation of AAT by oxidation of 
either Met-351 or Met-358 provides a mechanism for 
regulation of its activity at sites of inflammation.152

Alpha-1 Antitrypsin

Experimental findings have suggested that the 
oxidation of Met residues by cigarette smoke or free 
radicals released from inflammatory cells not only 
reduces the anti-elastase activity of AAT but also 
converts AAT into a proinflammatory molecule. 
Likewise, oxidized AAT has been found to induce 
monocyte chemoattractant protein-1 (MCP-1) 
release from monocytes.153 MCP-1 belongs to the CC 
chemokine family and functions as a chemoattractant 
for mononuclear phagocytes, T lymphocytes, B cells, 
and natural killer cells. Increased MCP-1 and its 
receptor, CCR2, in the lung have been positively 
associated with leukocyte infiltration in COPD.154

The oxidized form of AAT has also been found 
to express anti-inflammatory effects. For instance, 
oxidized AAT inhibits inflammation in response 
to cigarette smoke in vivo155 and induces a broad 
anti-inflammatory profile in gene expression of 
primary human lung microvascular endothelial 
cells.156 Moreover, oxidized AAT was found to 
prevent acute liver injury in vivo.157 We recently 
provided in vitro evidence that both native and 
oxidized AAT control equally well ATP-induced IL-
1β release from human mononuclear blood cells.158 

Available findings have allowed us to speculate 
that the biological activities of oxidized AAT may 
depend on the magnitude of AAT oxidation, in a 
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manner similar to that discussed for HSA (Figure 3).
Similar to albumin, AAT can function as an 

indirect free radical scavenger by interacting with 
neutrophil alpha defensins,159-161 free fatty acids,162 
and free heme.163 As an example, Tiriveedhi et 
al  reported that lung transplant patients, who 
developed chronic lung allograft rejection, show 
increased defensin and decreased serum AAT 
levels along with high concentrations of AAT-
defensin complexes in their bronchial lavage.164

Some studies have proposed that a fraction of the 
AAT protein is S-nitrosylated under physiological 
conditions, and that AAT nitrosylation is more 
efficient than the nitrosylation of bovine serum 
albumin or glutathione.165 The S-NO-AAT 
expresses a potent antimicrobial activity, inhibits 
cysteine proteases, and induces heme oxygenase-1 
expression in hepatic ischemia-reperfusion injury in 
rats.166 A recent study reported that S-nitrosylation 
altered AAT to a proinflammatory protein, which 
facilitated the inflammatory state of macrophages 
by upregulating proinflammatory molecules and 
the activation of MAPK signalling pathways.167

However, the antioxidant properties of AAT remain 
largely unknown. Further investigations are required 
to understand fully the dynamics of AAT oxidation, 
and the mechanism of action of oxidized AAT.

Severe inherited alpha-1 antitrypsin deficiency 
(AATD) is a monogenic, autosomal, co-dominant, 
inherited disease associated with a risk for developing 
liver disease at any age and/or early onset emphysema. 
The most clinically relevant Z variant of AAT protein 
differs from the normal M by a single amino acid 
substitution (Glu342Lys). This mutation results in 
protein accumulation within the endoplasmic reticulum 
(ER) of hepatocytes and other AAT-producing cells, 
which leads to ER stress or an aberrant inflammatory 
response.168 Studies in experimental models have 
shown an association between AATD and oxidative 
stress.169 It has been demonstrated that the expression 
of human Z AAT protein in mouse liver leads to 
elevated oxidative stress and lowered antioxidant 

Oxidants/Antioxidants in the 
Liver and Lung of Individuals with 
Inherited Alpha-1 Antitrypsin 
Deficiency 

protection.170 However, selenoprotein S was found 
to reduce ER stress and enhance cell ability to cope 
with the burden of misfolded Z AAT protein.171,172 

Liver is a major organ attacked by ROS.173 
The oxidative stress is regarded as one of the 
pathological mechanisms during initiation and 
progression of liver fibrosis/cirrhosis, alcoholic 
liver diseases, and non-alcoholic steatohepatitis. 
Concomitantly, systemic oxidative stress arising 
during liver damage can affect extrahepatic organs.174

AATD-related liver diseases have a highly variable 
clinical phenotype, suggesting that disease progression 
is strongly influenced by environmental and genetic 
modifiers.172 Genes involved in pathways related 
to oxidative stress and antioxidant defense might 
therefore be potential genetic modifiers in AATD-
related liver diseases, and warrant further investigation.

Numerous studies have shown an increase 
of systemic oxidative stress markers in the 
lungs of cigarettes smokers and COPD patients 
without and with inherited AATD.175-181

The finding that the administration of all-
trans retinoic acid (ATRA) in elastase-induced 
emphysema in rats reversed the emphysematous 
changes,182 suggested that ATRA might be a 
beneficial therapy for patients with emphysema. 
However, clinical trials of emphysema patients 
with and without AATD have failed to demonstrate 
measurable improvements in lung destruction.183

Another approach has been based on the observation 
that emphysema patients showed a marked reduction 
in the levels of hyaluronic acid,184 and that therapy 
with hyaluronic acid protected elastase-induced 
emphysema in mice.185 Hyaluronic acid is a high 
molecular weight glycosaminoglycan involved in the 
regulation of migration of inflammatory cells and 
the scavenging of free radicals.186 The mechanism 
by which hyaluronic acid may protect elastin is not 
yet understood. One possibility is that hyaluronic 
acid binds to elastic fibres and prevents them from 
attack by elastase.187 Investigators have therefore 
hypothesized that aerosols of hyaluronic acid inhaled 
daily may protect against lung elastic fiber injury. To 
test this hypothesis, trials of inhaled hyaluronic acid 
in individuals with AATD are under way in the hope 
of preventing the progression of this lung disease.

Remarkably, a study by Escribano et al revealed 
that, when compared with the control group, children 
with severe AATD showed significantly increased 
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levels of oxidative stress biomarkers and decreased 
levels of antioxidants, as expressed by lower total 
and reduced glutathione levels, decreased catalase 
activity, and increased glutathione peroxidase 
activity.188 These findings supported oxidative 
stress as a feature of AATD contributing to the 
risk of disease development late in life. Moreover, 
oxidation of AAT may lead to a loss of its anti-
protease activity that is already lower in AATD, so the 
antioxidant potential in the treatment of emphysema 
patients with AATD needs to be considered.189 

Until now there has been limited knowledge about 
the antioxidant status in AATD individuals, so the 
usefulness of antioxidant therapies remains to be 
investigated.

ROS are the natural consequence of aerobic 
metabolism and are important for basic cellular 
functions, including proliferation, inflammation, 
apoptosis, and gene expression. However, if the level 
of radicals exceeds that which the body can handle, 
then oxidative stress occurs. Factors increasing the 
production of reactive species can be internal, such 
as inflammation, or external such as pollution, UV 
exposure, xenobiotic compounds, and cigarette smoke. 
Many substances associated with oxidative stress 
increase during aging and in patients with chronic 

Conclusion 

inflammatory diseases, like COPD. To protect the 
cells and organ systems against ROS, humans have 
evolved a highly sophisticated and complex internal 
and external antioxidant protection system. Preclinical 
studies and clinical trials suggest that antioxidants, 
such as small thiol molecules (N-acetyl-L-cysteine 
and carbocysteine), antioxidant enzymes (glutathione 
peroxidases), activators of Nrf2-regulated antioxidant 
defense system (sulforaphane), and vitamins, for 
example, C, E, and D, enhance the endogenous 
antioxidant system and reduce oxidative stress. 
Among important antioxidants are blood proteins, 
specifically albumin. Whether AAT is a significant 
contributor to the antioxidant protein pool in human 
blood remains to be investigated in more detail. Further 
basic and translational research is needed to identify 
individuals more susceptible to ROS damage, and to 
clarify whether ROS is an important target to treat 
COPD and AATD patients. This knowledge might be 
critically important for identifying patients who benefit 
most from the therapy with purified AAT protein 
and/or specific drugs with antioxidant potentials. 
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