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bronchial asthma despite evidence of severe airflow 
obstruction.49 It is also known that the relationship 
between FEV1 and the ventilatory response to 
increasing inspired CO2 is highly variable.10 The 
present study suggests that factors besides FEV1 are 
involved in inspiratory muscle loading and likely 
include increased ventilation demands from dead 
space ventilation and increased oxygen demands, as 
well as CO2 production from excessive inspiratory 
muscle work.

Our results also suggest that reduced ventilatory 
capacity and low inspiratory muscle reserve likely play 
a role in the development of chronic hypercapnia. In 
severe COPD, inspiratory muscles are disadvantaged 
by hyperinflation, compromised oxygen delivery, 
structural changes from chronic overloading, and 
systemic effects from chronic inflammation.1,10-19    

These load/capability imbalances likely influence 
the ventilatory control center in the brain stem. The 

ventilatory control center is a collection of neurons, 
feedback networks, and intrinsic pattern generators 
that must balance inputs from chemoreceptors sensing 
blood gases and acid base balance along with inputs 
from load and stretch receptors in the lungs, chest wall, 
and respiratory muscles.31-42 An attractive hypothesis 
is that the resulting neuronal output driving the 
ventilatory pattern is essentially attempting to provide 
adequate gas exchange while avoiding unnecessary 
lung stretch and not fatiguing the inspiratory muscles.  
Our results shed some insight into this concept. 
Most obvious is the observed overall reduction of 
minute ventilation and tolerance of hypercapnia and 
respiratory acidosis in these COPD patients with severe 
load/capability imbalances. Although hypercapneic 
COPD patients can voluntarily hyperventilate to lower 
the PaCO2, long term hypoventilation may be viewed 
as a “wise choice” to protect the inspiratory muscles 
at the expense of tolerable (non-life threatening) 
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hypercapnia. More precise methods than those 
available in the present study to approximate the 
activity of the ventilatory control center will be needed 
to elucidate the contribution of downregulating the 
ventilatory control center to hypercapnia.

More complex is our observation that emphysema 
is negatively associated with hypercapnia. One 
explanation for this is the concept that load, stretch, and 
lung/thorax irritant receptor behavior in emphysema 
is different than in predominant airway disease. 
This might result in the ventilatory control center 
prioritizing ventilation over muscle protection and 
creating the “pink puffer” phenotype in predominantly 
emphysematous COPD. The negative associations 
of hypercapnia with emphysema are consistent with 
retrospective, postmortem reports that hypercapneic 
COPD patients have less obvious radiographic 
evidence of emphysema on chest CT and more 
normal DLCO on pulmonary function testing than 
those without hypercapnia.50 Given that this patient 
population was highly selected for severe emphysema 
rather than airway disease, our discussion above must 
be viewed with considerable caution.

The negative independent association of DLCO 
with hypercapnia in our patients may reflect this 
emphysematous effect. An interesting alternate 
explanation might be the fact that the alveolar hypoxia 
produced by hypercapnia could increase CO uptake, 
a phenomenon described by Roughton and Forester 
years ago.51 One final caveat is the observed association 
of an increased need for oxygen supplementation in 
hypercapneic patients. This is not surprising given the 
link between alveolar ventilation and both PCO2 and 
PO2. It may also suggest  that impaired ventilation/
matching and/or the Haldane effect may also contribute 
to hypercapnia in these patients.12,23,32 

There are important limitations to this study. One is 
the cross sectional design which, although evaluating 
factors concurrently, limits causal inference. The 
potential mechanisms should be validated through 
randomized experimental trials. Evaluating the 
interplay between multiple factors is complex and 
may be affected by collinearity between variables. 
Collinearity was addressed in multiple ways including 
variable section based on subject matter knowledge, 
evaluation of multiple models with/without potential 
collinear factors, and techniques including Lasso 
method. Validation of the present findings in 
independent datasets is warranted.

Importantly, the present findings pertain to highly 
characterized patients with severe emphysema 
(as opposed to chronic bronchitis) with limits on 
hypercapnia (PCO2 > 60 mmHg), obesity (body mass 
index > 31), and hypoxemia (PO2 < 45 mmH2O). 
Unfortunately, because of limited data and exclusion 
of patients with moderate to severe pulmonary 
hypertension, we were also unble to characterize the 
effects of pulmonary hypertension on hypercapnia. 
Also, our participants were enrolled in a randomized 
controlled trial and may not be generalized to the broad 
population of patients with severe COPD or other 
phenotypes. Finally, our data set did not allow us to 
address  the roles of extra-pulmonary factors, such as 
chest wall properties, hormones, systemic inflammatory 
cytokines, metabolic agents, nutritional status, cardiac 
function, psychological factors, and even genetic 
factors on the responses to load/capacity imbalances 
and the development of hypercapnia.9,52-54 These 
analyses will need to be  the focus of future studies. 

In summary, it is clear that the development of chronic 
hypercapnia in COPD is complex and multifactorial. 
However, our results suggest that an over-arching 
theme may be that a reduced ventilatory drive develops 
in the face of severe mechanical load/capabilities 
imbalances. Understanding hypercapnia and its 
effects is important as its presence is associated with 
worse hypoxemia, polycythemia and right ventricular 
hypertrophy with eventual right heart failure. These 
all translate into poorer outcomes including worse 
mortality. Indeed, there is growing interest in providing 
hypercapneic patients with chronic non-invasive 
positive pressure ventilation (NPPV) to conceptually 
unload respiratory muscles for prolonged periods 
of time (e.g., nocturnal use). While NPPV use in this 
fashion may reset the resting PaCO2 to lower levels, 
a risk of fostering hyperinflation and air trapping 
exists and long term outcome data are conflicting.54,55 

Better understanding of the determinants and effects 
of hypercapnia will help us understand the role of 
therapies such as NPPV in the future.
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