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Background: Chronic obstructive pulmonary disease (COPD) is a known comorbidity for lung cancer 
independent of  smoking history. Quantitative computed tomography (qCT) imaging features related to 
COPD have shown promise in the assessment of  lung cancer risk. We hypothesize that qCT features from 
the lung, lobe, and airway tree related to the location of  the pulmonary nodule can be used to provide 
informative malignancy risk assessment. 

Methods: A total of  183 qCT features were extracted from 278 individuals with a solitary pulmonary nodule 
of  known diagnosis (71 malignant, 207 benign). These included histogram and airway characteristics of 
the lungs, lobe, and segmental paths. Performances of  the least absolute shrinkage and selection operator 
(LASSO) regression analysis and an ensemble of  neural networks (ENN) were compared for feature set 
selection and classification on a testing cohort of  49 additional individuals (15 malignant, 34 benign).

Results: The LASSO and ENN methods produced different feature sets for classification with LASSO 
selecting fewer qCT features (7) than the ENN (17). The LASSO model with the highest performing training 
area under the curve (AUC) (0.80) incorporated automatically extracted features and reader-measured 
nodule diameter with a testing AUC of  0.62. The ENN model with the highest performing AUC (0.77) also 
incorporated qCT and reader diameter but maintained higher testing performance AUC (0.79).

Conclusions: Automatically extracted qCT imaging features of  the lung can be informative of  the 
differentiation between individuals with malignant pulmonary nodules and those with benign pulmonary 
nodules, without requiring nodule segmentation and analysis.
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Chronic obstructive pulmonary disease (COPD) is 
characterized by obstructive lung function. Evaluated 
with medical imaging, COPD is heterogenous with 
varying presentations of structural changes in the lung 
parenchyma and airways. COPD is a risk factor for lung 
cancer development, independent of smoking history.1,2 
Prior studies that included pulmonary function testing 
and qualitative imaging assessment using computed 
tomography (CT)2-4 have shown links between COPD 
features and risk of lung cancer. There has been limited 
published research into the overlap of the COPD-
related quantitative-CT (qCT) measures and pulmonary 
nodules and risk of lung cancer. Most studies have 
compared individuals with a lung cancer diagnosis to 
individuals without pulmonary nodules.2,5-10 Extent 
of emphysema in the lungs has been shown to be a 
positive predictor of lung cancer5-7,9-11; qCT airway 
measures have also been assessed for potential predictive 
benefit, yet no significant discriminatory ability has 
been demonstrated.7,11 However, many of these studies 
have not focused on controls with nodules. Here, we 
investigate a population with identified nodules that 

Introduction
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present a significant post-CT imaging challenge in 
the selection of the appropriate follow-up procedure. 

We investigate the utility of objective and 
automatically obtained qCT metrics in predicting 
individuals with lung cancer on a cohort of scans all 
of which include solitary pulmonary nodules ≥4mm. 
Here, the nodule was not extracted or segmented 
from the scans prior to qCT feature extraction. We 
hypothesize that qCT features from the lung, lobe, and 
airway tree related to the location of the pulmonary 
nodule can be used to provide informative malignancy 
risk assessment, without requiring segmentation of the 
pulmonary nodule. Ultimately, for a risk assessment 
pipeline to be most clinically helpful, there should be 
the requirement for as little human effort as possible. 
The performance of the least absolute shrinkage and 
selection operator (LASSO) regression analysis and an 
ensemble of neural networks (ENN) were compared 
for feature set selection and classification on qCT 
features and demographical/clinical characteristics.

Study Population

The study cohort was comprised of individuals 
retrospectively collected with institutional review board 
approval from 3 prospective research studies: the 
COPD Genetic Epidemiology Study (COPDGene®),12 
the Inflammation, Health, and Lung Epidemiology 
Study (INHALE),2 and the National Lung Screening 
Trial (NLST).13 Inspiratory CT data was collected 
from multiple institutions following a standardized 
protocol. Demographic and basic clinical features 
were obtained from parent studies (Table 1). 

The established study cohort included 327 
individuals with solitary pulmonary nodules (86 
with primary lung cancer diagnosis) who underwent 
CT prior to diagnosis. The criterion for inclusion in 
this study was based on the availability of diagnostic 
information: malignant nodules were confirmed on 
histopathology, and benign nodules were diagnosed 
by histopathology and/or stability/resolution on more 
than 24 months follow-up. Diagnosis of COPD was 
not an inclusion criterion of the study, with 42% of the 
cohort having no COPD (Global initiative for chronic 
Obstructive Lung Disease14 [GOLD] 0) and 58% having 
COPD (GOLD 1–4). The individuals were sectioned 
into a training cohort (n=278) and a testing cohort 
(n=49), using class-persevering random selection.

Materials and Methods
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Feature Groups

Two feature groups were collected and analysed for 
predictive capabilities: (1) Clinical and (2) Imaging 
qCT. Clinical features required input from a human 
based on recollection of the patient, clinical testing, 
or image reader assessment. Imaging qCT features 

were automatically extracted from the CT datasets 
using Apollo software suite (VIDA Diagnostics). 

Clinical Features: 

A subset of this study’s cohort was previously used to 
investigate the utility and consistency of post-imaging 
mathematical prediction models for the differentiation 
between malignant and benign lung nodules.15 The 
clinical predictive values collected were included as 
clinical features including: 7 measures of individual-
provided historical information (age, sex, smoking 
history, cessation time, history of cancer, family history 
cancer, family history lung cancer), radiologist-reported 
maximum in-plane diameter, and 4 pulmonary function 
tests (PFTs) including forced vital capacity (FVC) 
percent predicted, forced expiratory volume at 1 second 
(FEV1) percent predicted, FEV1/FVC, and GOLD stage. 

Imaging Features: 

In total, 183 qCT measures were available for model 
development. qCT characteristics of the parenchyma and 
airways (segmental branches) were extracted (Apollo, 
VIDA Diagnostics). Parenchyma measurements were 
calculated across the whole lung (Lung) or isolated 
from the lobe containing the pulmonary nodule (Lobe). 
Measures from the segmental bronchi were incorporated 
across the whole lung (Lung), from 5 selected airway 
pathways passing through RB1, RB4, RB10, LB1 and 
LB10 (segmental airway paths [sAP]) and limited only to 
the bronchi in the lung lobe containing the pulmonary 
nodule (Lobe). The diversity in measurements 
throughout the lung was captured by incorporating 
the coefficient of variation (CV) in the measurements 
across all lobes, calculated using the “raster” 
package in the R statistical programming language.16

Parenchymal characteristics were captured 
through Hounsfield unit (HU) intensity, from the 
lung tissue including HU histogram mean, standard 
deviation, and skew. Areas of low tissue density were 
captured as the percentage of lung volume less than 
-910 HU (percentage below -910 HU), and high tissue 
density regions were represented as the percentage 
of lung volume above 0 HU (percentage above 0 HU). 
Total, tissue, and air volumes were also included. 

Airway characteristics included wall thickness, 
diameters, perimeters, areas, and wall area 
fraction. Another commonly utilized airway 
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metric of wall thickness at a standardized internal 
airway perimeter of 10mm (Pi10) was included. 

Application of Statistical and Machine Learning 
Techniques

Chi-squared or Fisher’s exact test (if >20% of cells 
had expected frequencies <5) were used to compare 
categorical variables, and Wilcoxon rank sum tests were 
used to compare continuous variables between patients 
based on diagnosis each for the training and testing sets. 
The models were developed using 3 feature pools: qCT 
(imaging features only), Clinical (clinical features only), 
and qCT+Clinical (qCT features alongside the clinical 
features). Model performance was estimated with area 
under the receiver operating characteristic curve (AUC-
ROC) and compared with the method of Delong. AUC-
ROC is also known as the c-statistic and represents 
the probability that a higher risk will be assigned to a 
randomly chosen true high-risk case (here, cancer) than 
a randomly chosen low risk case (here, non-cancer).17-19

Multivariable Model Development:

Using the training dataset, LASSO models were 
applied to identify prognostic predictors of nodule 
malignancy status. LASSO model performance on 
the training set was estimated with 100 repeats of 
10-fold cross-validation. The model derived in the 
building phase was applied to the testing dataset. AUC-
ROC was used as the measure of model performance.

Ensemble Neural Network Model Application:

The machine learning pipeline described in Uthoff et al 
was implemented with the following modifications.15 
Lung parenchyma and airway image segmentation and 
feature extraction was implemented using the Apollo 
software. No segmentation or feature extraction of the 
pulmonary nodule(s) was required. Highly correlated 
features were reduced to a single representative feature 
through k-medoid clustering and mutual information 
optimization (IO) was used to rank informative 
predictors for feature selection. The selected feature set is 
used to train an ensemble of neural networks (ENN). We 
apply the techniques developed for feature set reduction, 
selection, and classification to feature groups qCT and 
qCT+Clinical. The final trained models (development) 
were applied to the independent testing cohort.

Statistical and Machine Learning Technique 
Results

The set selection methods (multivariable and IO) were 
applied to the feature pools qCT and qCT+Clinical. 
Table 2 indicates the features selected in each of 
the models. In total, 30 features were selected as 
predictors in 1 or more of the models. There was 
minimal overlap between the features selected by 
multivariable and IO methods (2 features overlap – lobe 
percentage above 0 HU and diameter). Table 3 shows 
the performance of the feature set selection methods 
(LASSO, IO) and classification methods (LASSO, ENN). 

Multivariable Analysis Selects Diameter and qCT 
Features for Highest Training Performance:

The multivariable analysis yielded a model that 
incorporated qCT features from the airway tree, whole 
lung, and lobe (Table 2). Selecting only automatically 
extracted imaging features for model development 
included 7 measures, with a training AUC-ROC of 0.80 
and a testing AUC-ROC of 0.56 – indicating overfitting of 
the training dataset (Table 3). Allowing the model to select 
clinically ascribed features from radiologist or participant 
input produced a model that included diameter and 4 
qCT features, with a training AUC-ROC of 0.80 and 
testing AUC-ROC of 0.62; the improvement in testing 
AUC-ROC could point to size bias within our cohort. 
A model developed using only clinical/demographical 
features included only the diameter, with a training 
AUC-ROC of 0.70 and testing AUC-ROC of 0.64. 

Ensemble Neural Network Schema Improves Testing 
Performance of Multivariable Selected Imaging 
Features:

The features selected through multivariable model 
development were used to train ENN models. The 
resulting training performance was similar to the 
multivariable model training performance, however, 
the resulting testing performance from the ENN 
model was higher (AUC-ROC of 0.60) for the qCT-
only features model compared to the multivariable 
testing (AUC-ROC of 0.56). This indicates the ENN 
classification performance is more stable on new cases. 

Results
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Combination Medoids-Information Optimization and 
Ensemble Neural Network Less Likely to Over-train than 
Multivariable Approach:

While the multivariable selection method for features 
obtained higher training AUC-ROCs for both feature pools 
(qCT+Clinical and qCT-only), the testing AUCs for these 
models implied potential overfitting, particularly with the 

qCT-only features (Table 3). This overfitting persisted 
in the ENN trained sample with the multivariable 
selected features indicating the overfitting is occurring 
during feature set selection. In contrast, the Medoids-IO 
selection followed by ENN model development obtained 
testing AUCs that were more consistent with the training 
AUCs. Delong’s analysis of the testing AUCs demonstrated 
that the qCT+Clinical Medoids-IO selected ENN model 
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(testing AUC-ROC of 0.79) was significantly better on 
new cases than the qCT+Clinical Multivariable selected 
ENN model (p≤0.01) and the qCT-only Multivariable 
selected ENN model (p=0.01). While the qCT-only IO 
selected ENN model also had a high testing AUC-ROC of 
0.74, it was not statistically better than the qCT+Clinical 
Multivariable selected ENN model (p=0.14) or the 
qCT-only Multivariable selected ENN model (p=0.08). 

Quantitative Imaging Feature Importance 

Nodule Diameter is the Only Clinical Feature Selected 
by Both Multivariable and Information Optimization 
Approaches:

The nodule diameter, measured as the Response 
Evaluation Criteria In Solid Tumor (RECIST) diameter, 
was the only clinical characteristic selected by the 
models. This could be due to the size bias that is seen 
in the cohort of pulmonary nodules –with cancerous 
nodules tending on average to be larger than their benign 
counterparts. The LASSO model using diameter achieved 
a training AUC-ROC of 0.70 and testing AUC-ROC 
of 0.64. Diameter was selected in both LASSO and IO 
selection methods. The addition of clinical characteristics 
did not significantly improve the performance of either 
LASSO or IO set selection in ENN development (p>0.05). 
The addition of clinical characteristics in IO set selection 
did significantly improve the testing AUC-ROC over 
LASSO set selection without clinical features (p=0.02). 

K-medoids Clustering Interrogates Feature Correlations:

For the full training dataset, k-medoid clustering with the 
optimal k produced 37 clusters. Example clustering of qCT 
features and clinical features is shown in Figure 1. Across 
10-fold cross validation, clustering of the qCT features 
using k-medoids method showed that 21 were stable 
(medoids in all 10 folds) and an additional 6 (27 total) 
were semi-stable (medoids in at least 8 of the 10 folds). 
Of note, the lobe standard_deviation HU qCT feature, 
which was selected in both the multivariable models, was 
not selected as a medoid in any of the 10-folds; instead, 
it was either a member of the cluster with representative 
lobe mean HU (8 folds) or lobe skew (2 folds). 

Multivariable and Information Optimization Select 
Vastly Different qCT Features:

Comparing the features selected by the 2 methods, only 
nodule diameter and the lobe percentage above 0 HU were 
common (Table 2). This is likely largely due to the feature-
set reduction by k-medoids performed prior to IO-set 
selection. Of the features selected by the multivariable 
model, only 2 (diameter and lobe percentage above 0 
HU) were selected as a medoid during 10-fold cross-
validation k-medoids clustering. As such, none of the 
remaining multivariable selected features were available 
for IO-set selection. The IO method selected more CV 
features than the LASSO selection method which only 
selected the CV of  the Standard Deviation of  the Major 
Outer Diameter using the qCT feature pool. The selected 
CV features were predominately from the airways. 

Features Related to the Location of the Pulmonary 
Nodule:

Table 2 illustrates that qCT features derived from the 
lobe containing the pulmonary nodule are incorporated 
to differing degrees across the model configurations. 
The qCT Medoids-IO selected ENN model included the 
most lobar features (n=10), while the qCT+Clinical 
Multivariate selected ENN model included the least lobe 
derived features (n=1). The qCT+Clinical Medoids-
IO selected ENN model, which achieved the highest 
testing performance (AUC-ROC=0.79), included 9 
lobar qCT features; 4 features from the parenchyma 
histogram, 3 features from airways, and 2 CV features. 
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in the benefit of whole lung qCT features for lung cancer 
risk assessment. Studies by Carr et al, Chubachi et al, 
and Gagnet et al indicated that increased low attenuation 
area percentages, indicative of CT-characterized 
emphysema, were higher in individuals who developed 
lung cancer.5,6 Studies by Gierada et al and Wille et 
al did not find statistically significant differences but 
indicated that emphysema was more frequently seen and 
at a higher grade in individuals with lung cancer.7,8 Bae 
et al investigated whole lung and lobar qCT emphysema 
ratios, finding the odds of lung cancer increased in 
lobes with more severe emphysema.9 However, work 
from Wilson, Maldonado, and Johannessen showed no 
statistical evidence in quantitative lung parenchyma 
and/or airway measures and risk of lung cancer.3,4,11 
Schwartz et al found in multivariable modelling only the 
expiratory qCT measure, percentage below -856 HU, and 

This study has demonstrated the potential richness 
in extra-nodular, automatically extracted imaging-
derived features for the distinction between individuals 
with malignant and benign pulmonary nodules. It has 
highlighted the utility of more advanced methods of 
qCT feature selection for less overtraining. Here, we 
extracted and included in the analysis many features 
in an exploratory manner instead of selecting a small 
subset of specific features as has predominately 
been reported previously. As such, we have found 
that the ENN system with IO was advantageous 
for the exploratory manner of feature selection. 

Prior works with qCT have primarily focused on the 
associations with lung cancer, irrespective of pulmonary 
nodule presence. These works have reported mixed results 

Discussion
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PFT characteristics were independent predictors of lung 
cancer risk.2 In contrast to the prior publications, this 
study consisted only of individuals with a pulmonary 
nodule (diagnosed malignant or benign tumor), a subset 
that may be highly relevant in lung cancer screening 
programs where solid pulmonary nodules require 
rigorous follow-up. One qCT feature associated with 
emphysema or low tissue density regions, percentage 
below -910 HU, was selected as a feature but only in 
1 model. However, associated information may have 
been captured indirectly by the selected features, 
mean HU, standard deviation of  HU, and the skew. 

This study did not segment the pulmonary nodule or 
remove it from the analysis. Previous machine learning 
works have looked at qCT features extracted solely from 
the nodule20-24 and from the lung tissue immediately 
surrounding the nodule15,24,25 with high performance 
in training (AUC-ROC=0.84-1.0). The features extracted 
for these tools incorporated intensity, shape, size, 
border, and texture; a recent multi-institutional study 
by the quantitative imaging network has demonstrated 
that quantification of the same image features can 
vary between groups.26 In this study, we extracted 
qCT measures using the Apollo proprietary software 
package (Food and Drug Administration approved, 
Conformité Européenne certified for clinical use in the 
United States and Europe); this allows for consistency 
in the method of quantification of features beyond 
what can be expected for in-house developed features. 

The best performing model from this study, 
qCT+Clinical Medoids-IO selected ENN model, 
included many features from the lobe of the lung that 
contained the pulmonary nodule. This is supportive 
of the study hypothesis that qCT features from the 
lung, lobe, and airway tree related to the location 
of the pulmonary nodule can be used to provide 
informative malignancy risk assessment, without 
requiring segmentation of the pulmonary nodule. The 
high predominance of airway features selected in all 
the models was somewhat unexpected. This warrants 
further investigation as it is not clear if these features 
are differentiated due to the presence of cancer or 
potentially indicative of structural airway features of 
populations more at risk for lung cancer development. 

It was surprising that diameter was the only clinical 
feature selected, particularly as the features included 
have been utilized in previously published lung cancer 
risk predictions.27-32 There is a known trend towards 

larger nodules having increased risk of malignancy, 
so much so that size is a main factor in the work-
up recommendations for screening and incidental 
nodules.27,33 However, with broader implementation of 
CT-based lung cancer screening, including collection of 
other contributing demographical and clinical factors 
could provide more impact for other risk factors. Also, the 
increased use of lung cancer screening and the associated 
mechanisms for structured reporting of patient data could 
standardize these factors further, allowing for potentially 
more useful information than is currently gathered. 

From a clinical workflow standpoint, a fully automated 
tool which does not require human interaction for nodule 
identification and segmentation would be advantageous. 
With the increased use of CT for lung cancer screening 
and for longitudinal tracking of incidental nodules, 
the workload of imaging data requiring radiology 
reads is increased; therefore, for a tool to be useful it 
must be easy to implement and require as little added 
effort as possible. Here, we demonstrated the potential 
improvement in testing AUC-ROC by incorporating 
automated qCT features (AUC-ROC=0.74, 0.79) over 
solely clinical characteristics (AUC-ROC=0.64). 

The limitations of this study included the 
retrospective collection, with a focus on solid solitary 
pulmonary nodules. The cohort used in this study has a 
size bias between malignant and benign classes, and the 
nodule was not excluded (segmented) from the analysis. 
However, the difference between the average malignant 
nodule diameter (mean 14.7mm) and benign nodule 
diameter (mean 9.11mm) is considered very small when 
placed in the context of whole lung structure assessment. 
We did not run separate analysis based on race which 
could in the future provide more accurate predictions 
as was shown previously in an African American 
population.34 We only included inspiratory scans in the 
analysis, and there are known expiratory scan measures 
(percentage below -856HU) which could further assist in 
the differentiation between malignant and benign cases. 

In conclusion, this work presents the potential value 
of COPD-related qCT features from the lung, combined 
with information optimization feature selection and 
ensemble neural net classification for distinguishing 
malignant from benign lesions. While performance of 
this developed technique was not perfect in the task of 
correctly identifying all lung cancer cases, it could have 
potential utility in reducing the clinical follow-up in 
individuals with benign CT-identified pulmonary nodules. 
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