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Background: The heterogeneous nature of chronic obstructive pulmonary disease (COPD) complicates the 
identification of the predictors of disease progression. We aimed to improve the prediction of disease progression in 
COPD by using machine learning and incorporating a rich dataset of phenotypic features. 

Methods: We included 4496 smokers with available data from their enrollment and 5-year follow-up visits in the 
COPD Genetic Epidemiology (COPDGene®) study. We constructed linear regression (LR) and supervised random 
forest models to predict 5-year progression in forced expiratory in 1 second (FEV1) from 46 baseline features. Using 
cross-validation, we randomly partitioned participants into training and testing samples. We also validated the results 
in the COPDGene 10-year follow-up visit.

Results: Predicting the change in FEV1 over time is more challenging than simply predicting the future absolute FEV1 
level. For random forest, R-squared was 0.15 and the area under the receiver operator characteristic (ROC) curves 
for the prediction of participants in the top quartile of observed progression was 0.71 (testing) and respectively, 0.10 
and 0.70 (validation). Random forest provided slightly better performance than LR. The accuracy was best for Global 
initiative for chronic Obstructive Lung Disease (GOLD) grades 1–2 participants, and it was harder to achieve accurate 
prediction in advanced stages of the disease. Predictive variables differed in their relative importance as well as for 
the predictions by GOLD. 

Conclusion: Random forest, along with deep phenotyping, predicts FEV1 progression with reasonable accuracy. 
There is significant room for improvement in future models. This prediction model facilitates the identification 
of smokers at increased risk for rapid disease progression. Such findings may be useful in the selection of patient 
populations for targeted clinical trials.

Abbreviations: chronic obstructive pulmonary disease, COPD; COPD Genetic Epidemiology study, COPDGene®; linear regression, LR; 
forced expiratory volume in 1 second, FEV1; receiver operator characteristic, ROC; Global initiative for chronic Obstructive Lung Disease, 
GOLD; computed tomography, CT; annualized 5-year changes in FEV1, ∆FEV1; root mean squared error, RMSE; increase in the mean 
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Chronic obstructive pulmonary disease (COPD) continues 
to be a major cause of disability and death in the United 
States and globally.1-4 Novel therapies that slow disease 
progression could result in an improvement in COPD 
patients’ health status and have a substantial impact 
on health care utilization. The development of such 
therapies will be aided by improved tools for predicting 
disease progression, enabling the selection of high-risk 
groups for targeted treatment. 

Predictive models incorporate multiple sources of 

Introduction
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This article has an online data supplement.

information to make patient-specific predictions and 
are widely used in multiple areas of medical practice. 
Existing models of disease progression in COPD have 
been limited in the scope of variables assessed.5-9 COPD 
exhibits significant variation in clinical and radiologic 
presentation as well as disease progression.6,10-12 This 
disease heterogeneity complicates the identification 
of the predictors of COPD progression and limits the 
accuracy of predictive models. Furthermore, COPD 
often progresses slowly over decades and true disease 
progression over short time periods can be difficult to 
detect with existing measurements.

In this study, we aimed to improve the prediction 
of COPD progression by applying machine learning to 
a rich dataset of clinical, demographic, patient-reported 
variables and imaging features in the COPD Genetic 
Epidemiology (COPDGene®) study. We hypothesized 
that deep phenotyping at the initial study visit along 
with random forest modeling, which exploits complex 
non-linear relationships and interactions among the 
risk factors, would facilitate the prediction of the rates 
of disease progression as measured by forced expiratory 
volume in 1 second (FEV1), a key aspect of COPD.

Study Populations

The COPDGene study is an ongoing, multi-institutional, 
longitudinal study to investigate the epidemiologic and 
genomic characteristics of COPD.13 COPDGene enrolled 
self-identified non-Hispanic White and African-
American smokers across the full spectrum of disease 
severity as defined by the Global initiative for chronic 
Obstructive Lung Disease (GOLD) spirometric grading 
system.14 Participants were aged 45 to 80 years at study 
enrollment and had at least a 10 pack-year lifetime 
smoking history. COPDGene collects longitudinal data at 
5-year intervals; the 10-year study visit is ongoing. Visit 
1 and Visit 2 were completed and Visit 3 is ongoing. At 
each study visit, participants underwent comprehensive 
phenotyping, which included spirometry, questionnaire 
assessment, and inspiratory and expiratory chest 
computed tomography (CT) scans, all of which were 
done according to a standard procedure with consistent 
quality control across centers. 

Derivation cohort - COPDGene Study Visit 1 and 
Visit 2: We analyzed 4496 smokers with complete CT 
scans and relevant covariate data at the baseline visit 

Methods and Materials

Note: The abstract from this work was presented at the 
American Thoracic Society International Conference in 
2018 and published in the American Journal of  Respiratory 
and Critical Care Medicine: Boueiz A, Chang Y, Cho MH, et 
al. Machine learning prediction of  5-year progression of 
FEV1 in the COPDGene Study. Am J Respir Criti Care Med. 
2018;197(A7430).
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(Visit 1) and 5-year follow-up visit (Visit 2) in the 
COPDGene cohort. 

Temporal validation cohort - COPDGene Study Visit 
3: During Phase 3 of the COPDGene Study, enrolled 
participants returned for their 10-year follow-up visit. 
At the time of this analysis, 1833 smokers had completed 
their 10-year follow-up visit and had available 10-year 
spirometric and radiologic data. To predict their outcome 
values at Year 10 (Visit 3), we entered their 5-year (Visit 
2) predictor data into the models trained in the derivation 
cohort. The FEV1 values for Visit 3 were observed. Our 
models were trained using only data from Visit 1 and 
Visit 2, where predictors were at Visit 1 and responses 
were Visit 2 values or the change in values between Visit 
2 and Visit 1. In this setting, cross-validation was used to 
assess model performance. To provide further temporal 
validation of our models, we tested our already-trained 
models (no further parameter fitting) by using Visit 2 
values for the predictors. This allowed us to compare 
the predicted Visit 3 values against the observed Visit 3 
values to assess the accuracy of each prediction model in 
the temporal validation cohort.

The COPDGene study design, participant enrollment, 
and phenotype measurements have been previously 
reported13 and additional information is included in the 
online data supplement.

Outcome Variables

We constructed models to predict annualized follow-
up FEV1 and 5-year changes in FEV1 (∆FEV1). ∆FEV1 
(mL/year) was calculated by subtracting the Visit 1 value 
from the Visit 2 value and dividing by the time between 
Visit 1 and Visit 2. Negative values represent a lower 
value of the outcome at Visit 2 (i.e., worsening of the 
disease over the 5-year period with greater loss of FEV1). 
From the prediction models of ∆FEV1, we also derived 
the prediction of Visit 2 FEV1 by adding the predicted 
5-year change to the observed Visit 1 value. 

Feature Selection 

Candidate predictors consisted of 46 baseline 
demographic, clinical, physiologic, and imaging variables 
that were available in the COPDGene population at Visit 
1 and had correlation coefficients of less than 0.90 with 
the other variables. We set the threshold to 0.9 to ensure 
that only secondary/redundant features are removed, 

rather than features with potentially complementing 
information. To confirm this, we reran our experiments 
with removal of variables with correlation coefficients 
≥0.7 and we compared the performance accuracies. 

Training, Testing, and Validation Samples

We trained a prediction model for ∆FEV1 in 4496 
participants with data from COPDGene Visit 1 and Visit 
2 using a nested, 10-fold cross validation procedure. The 
inner fold of cross validation was used for parameter 
tuning. In the outer fold, our studied derivation cohort 
was randomly partitioned into 10 mutually exclusive 
subsets (folds) of approximately equal size, using nine 
folds for training and one-fold for testing each time for 
10 times. This entire procedure was repeated 5 times to 
account for the random variability of the partitioning 
procedure and provide more accurate estimates of 
the performance. This repeated resampling procedure 
created an ensemble of 50 models over which we 
averaged the predictions, and we then validated the 
performance of this model using data from COPDGene 
Visit 3 that had not been used in any aspect of the model 
training process (temporal validation). 

Random Forest Supervised Machine Learning

Supervised random forest is an ensemble learning method 
that predicts outcomes by fitting a series of decision trees 
and aggregating the results across trees. This method can 
capture non-linear dependencies and has been shown 
to perform well for a range of tasks.15 It begins building 
each tree by randomly selecting participants for the tree 
with replacements (bootstrap samples). Participants not 
selected in bootstrapping represent the out-of-bag set. 
For each bootstrap sample, a decision tree is trained 
by recursive binary partition of the data until the 
minimum node size is reached. At each node split, an 
optimal feature (and its split-point) is identified from a 
randomly selected subset of features by minimizing a loss 
measure. The random selection of features reduces the 
correlation between trees, leading to variance reduction 
and improved generalization performance. It also allows 
a moderately informative feature to assert its importance 
to the prediction. Once an ensemble of trees is grown, 
the prediction for a new sample is made by aggregating 
predictions (e.g., averaging for regression and majority 
vote for classification) from individual trees. In our 
study, we fixed the number of trees at 500 and tuned 
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the hyperparameters (the bootstrap sampling fraction, 
the minimal node size and the number of features to use 
at each split) by minimizing root mean squared error 
(RMSE) using a nested 10-fold cross-validation within 
the training data. 

Random Forest Variable Importance and Their 
Effects on the Prediction 

We calculated variable importance scores as the 
aggregated increase in the mean squared errors (IncMSE) 
of predictions estimated with out-of-bag samples 
when the values of a given variable are randomly 
permuted.16,17 The larger the increase in prediction 
error when permuted, the higher the variable importance 
score (IncMSE), and the more important the variable is 
to the prediction. Since the raw permutation importance 
has better statistical properties, the importance values 
were not normalized.18 Therefore, they cannot be used 
to compare variable importance across prediction tasks, 
but they can be used within the same prediction task to 
rank variables by their contribution to the accuracy of 
the final model. 

Prediction Performance

We assessed the accuracy of each prediction model 
using the RMSE and R-squared metrics, indicators of the 
goodness of fit of a set of predictions to the observed 
values. For the prediction of ∆FEV1, we also assessed the 
ability of the models to correctly identify participants 
in the top quartile of disease progression (i.e., greatest 
decline in FEV1) as quantified by the areas under the 
receiver operator characteristic ROC curves (AUC-ROC). 

Linear Regression 

To compare the performance of random forest to that 
of a more traditional modeling approach, the same set 
of predictors was evaluated in linear regression models. 

Statistical Analyses

We performed a complete case analysis. Descriptive 
characteristics were reported respectively as percentages 
and medians with interquartile ranges for categorical 
and continuous variables. Variables were analyzed 
using the t-test for normally distributed variables, the 
Wilcoxon rank sum test for non-normally distributed 

variables, and Chi-square tests for categorical variables. 
To identify differences in the quality of prediction and 
variable importance in participants with different levels 
of COPD severity, we also constructed prediction models 
separately in various GOLD subgroups. All tests of 
significance were 2-tailed with a significance threshold 
of P-value <0.05.

Results

Participant Characteristics

In total, 4496 COPDGene participants (median age: 60; 
51% men; 73% non-Hispanic Whites) had complete 
phenotypic data and were included in the analysis. The 
participant flow diagram is shown in Figure 1. 

Characteristics of “Rapid FEV1 Progressors” 
in COPDGene: To describe the characteristics of 
participants who were “rapid FEV1 progressors” and test 
the null hypothesis that there is no systematic difference 
in patient characteristics between the 2 groups, we 
examined the characteristics of participants in the top 
quartile of progression to those in the bottom quartile 
(Table 1). Compared to participants in the bottom 
quartile of ∆FEV1, those in the top quartile (rapid 
FEV1 progressors) had a higher proportion of males 
with less severe spirometric impairment at baseline 
but with higher exposure to smoking (pack years 
and percentage of current smoking), more advanced 
radiologic disease (total emphysema and gas trapping), 
more bronchodilator responsiveness, more dyspnea and 
chronic bronchitis symptoms, and a lower rate of obesity 
and metabolic syndrome. The many significant P-values 
support the alternative hypothesis and shed light on the 
factors that may be associated with or even contribute to 
the rapid FEV1 progression. The significant differences 
between the rapid and slow progressors also underpin 
the clinical relevance of identifying rapid progressors 
using a prediction model. 

The median change in FEV1 was -37 (interquartile 
[IQR]: -66, -9)mL/year (Figure 2). Fifty-seven percent 
of the studied participants had a rate of decline in FEV1 
of more than 30mL/year over the 5-year period and 7% 
had an increase in FEV1 of more than 30mL/year. Rapid 
FEV1 progressors had a median change of -91mL/year 
compared to 11mL/year for slow spirometric progressors 
(Table 1). When assessed according to the severity of 
airflow limitation, the rate of FEV1 decline was inversely 



353 Machine Learning Prediction of Progression in FEV1

journal.copdfoundation.org   JCOPDF © 2022 Volume 9 • Number 3 • 2022

For personal use only. Permission required for all other uses.

related to the GOLD grade, with medians of ∆FEV1 of 
-46, -38, -31, -16mL/year for GOLD 1–4, respectively. 

Prediction Performance for Follow-up Forced 
Expiratory Volume in 1 Second and 5-year 
Change in Forced Expiratory Volume in 1 Second 

We constructed the prediction models using a nested 
cross-validation procedure and we assessed the 
prediction performance in the COPDGene 10-year 
follow-up visit. A schematic representation of our model 
is shown in Figure 3. The list of candidate predictors 
is provided in Table 2. In the cross-validation testing 
samples, on average, 89.6% of the variance in follow-up 
FEV1 values were explained and the AUC-ROC curves 
for the prediction of participants in the top quartile of 
observed disease progression was 0.97 (Table 3 and 
Figure 4). This high performance was maintained in the 

temporal validation with an R-squared value of 0.91 and 
AUC of 0.98 (Table 3). For the prediction of the change 
in FEV1 over time (∆FEV1), the average R-squared value 
was 0.15 and AUC was 0.71 in the testing samples and 
respectively, 0.10 and 0.70 in the validation cohort. 

The random forest model had slightly better 
performance for the prediction of ∆FEV1 compared to 
linear regression (Table 3). The percentage of variance 
explained by random forest versus linear regression was 
14.7% versus 12.3%. The indirect approach arithmetically 
transforms the predictions from modeling change in 
FEV1 to follow-up FEV1 predictions, and the best follow-
up FEV1 prediction is achieved via an indirect approach 
with random forest modeling change in FEV1. In all cases 
by all metrics, random forest modeling change in FEV1 
leads to the best prediction directly in change in FEV1 and 
indirectly in follow-up FEV1. These results demonstrate 
consistently the superiority of random forest versus 
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linear regression and the merit of modeling change in 
FEV1 compared with modeling follow-up FEV1.

Candidate predictors consisted of variables that 
were available in the COPDGene population at Visit 1 
and had correlation coefficients of less than 0.90 with 
the other variables. We set the threshold to 0.9 to ensure 
that only secondary/redundant features are removed, 
rather than features with potentially complementing 
information. To confirm this, we reran our experiments 

with 7 variables removed using a correlation criterion 
of 0.7 (CT-measured total lung volumes at end-
inspiration, FEV1 to forced vital capacity (FVC) ratio, 
GOLD spirometric grade, airway wall thickness, post-
bronchodilator FEV1, sex, and adjusted 15th percentile 
point (Perc15) density. We found that by setting the 
correlation threshold to 0.7, the resulting predictive 
performance decreased, particularly for the follow-up 
FEV1 (median RMSE increased from 269.71 to 278.60 
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for follow-up FEV1 and from 46.91 to 47.04 for change 
in FEV1).

Setting the number of trees to the default of 500 
provided a good compromise between performance and 
computational efficiency in our datasets, as evidenced by 
the 10-fold cross-validation loss curves with respect to 
the number of trees shown in Figure 1S in the online 
supplement.

Analysis of Signal to Noise Ratio for 5-year 
Change in Forced Expiratory Volume in 1 Second

Changes in spirometric measures are more commonly 
used endpoints in COPD clinical trials. Predicting future 
FEV1 values is not the same as predicting the changes 
of FEV1 over the same period, since the ∆FEV1 over a 
fixed time period generally contributes a relatively 
small amount to the overall variance of FEV1 at a given 
time point. Given the often gradual rate of progression 
of COPD, 5 years is a relatively short observation 

period, and one of the concerns is that the signal to 
noise ratio in our progression variables is insufficient 
for reliable prediction. To determine the signal-to-
noise characteristics of our progression variables, we 
calculated the expected signal-to-noise ratio using 
previously published values19 of measurement error for 
FEV1. An important parameter in these calculations is 
the extent of correlation in errors between the 2 study 
measurements. Since empiric data were unavailable, we 
assumed independence between these errors; therefore, 
these estimates likely represent a lower bound on the 
proportion of noise in these measures. We estimated 
that measurement error accounted for at least 22% of 
the variance of ∆FEV1 (calculations are included in the 
supplement). Thus, the theoretical upper bound for 
prediction performance of ∆FEV1 was 78%. 

Important Predictors and Their Effects on Prediction

Figure 5 shows the ranking of the top-20 predictors 
based on their importance scores in the random forest 
models. Several of the known COPD disease progression 
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risk factors were present as top-ranked risk factors in 
our models and other new predictors were identified. 
The most important variables for FEV1 progression 
included baseline spirometry, CT-measured total lung 
volume, bronchodilator responsiveness, gas trapping, 
total emphysema, and smoking exposure. Variables like 
the number of COPD exacerbations in the prior year, 
selected comorbidities, and dyspnea scores were of less 
importance. 

Prediction of COPD Progression Stratified by 
Global Initiative for Chronic Obstructive Lung 
Disease Grade 

To determine whether progression was determined 
by different variables at different GOLD spirometric 
grades, we examined the performance of random 
forest prediction models for pre-specified subgroups of 
smokers stratified by GOLD grade (n=4496 [Overall], 
499 [preserved ratio-impaired spirometry (PRISm)], 
2116 [GOLD 0], 1318 [GOLD 1–2], and 563 [GOLD 
3–4]). We observed significant differences in predictive 
performance across these subgroups. The model 

performance accuracy was best for GOLD 1–2 and it was 
harder to achieve accurate prediction in advanced stages 
of the disease. The area under the ROC curves for the 
prediction of participants in the top quartile of disease 
progression was 0.66 (GOLD 0), 0.73 (GOLD 1–2), and 
0.58 (GOLD 3–4). The predictors of disease progression 
were also different by GOLD grade (Figure 5). For 
instance, bronchodilator responsiveness seems to be less 
important and emphysema and airway disease more 
important in the prediction of ∆FEV1 in participants at 
more advanced stages of the disease. 

Effects of Accounting of Smoking Status in Both 
Baseline and Follow-up Visits on the Prediction 
Performance

At Visit 1, 47% of the studied participants were current 
smokers and 53% were former smokers. At Visit 2, 
37% of the studied participants were current smokers 
and 63% were former smokers. At Visit 3, 30.6% of the 
studied participants were current smokers and 69.4% 
were former smokers. In terms of change of the smoking 
status between visits, 35% remained current smokers at 
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This current study showed that the prediction of change 
in FEV1, which is more relevant for disease progression, is 
more challenging than predicting the absolute FEV1 level. 
Our prediction models for ∆FEV1 represent the current 
state of the art for prediction of prospective change in 
FEV1. But there is significant room for improvement in 
future models. The most important predictive variables 
came from a wide range of clinical, spirometric, and 
imaging features. Baseline spirometry, CT-measured 
total lung volumes, and bronchodilator responsiveness 
dominated the prediction. In addition, the predictive 
performance and the relative importance of predictors 
differed by GOLD grade. 

Several screening tools are available to identify 
patients with undiagnosed COPD and to predict outcomes 
in patients with COPD.1,8,9,20-25 While Zafari et al 
and Chen et al developed and validated risk models to 

Discussion
Visit 1 and Visit 2 and 50.7% remained former smokers 
at Visit 1 and Visit 2. A total of 11.9% were current 
smokers at Visit 1 and former smokers at Visit 2 and 2.2% 
were former smokers at Visit 1 and current smokers at 
Visit 2. A total of 27.9% of studied participants remained 
current smokers at Visit 2 and Visit 3 and 63% remained 
former smokers at Visit 2 and Visit 3. A total of 6.4% 
were current smokers at Visit 2 and former smokers at 
Visit 3 and 2.7% were former smokers at Visit 2 and 
current smokers at Visit 3. We reran our prediction 
models adding the smoking status variable at Visit 2 in 
the derivation cohort (and Visit 3 smoking status for 
the temporal cohort). No major effect on the prediction 
performance was noted as shown in Table 1S in the 
online supplement.
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accurately predict lung function trajectory,8,9 our study 
is the first to apply advanced machine learning methods, 
use an extensive set of phenotypic measurements and 
comorbidities, predict not only the follow-up values but 
also the more relevant change variables, and identify the 
relative importance of the predictors at various stages 
of the disease. With respect to the outcomes evaluated 
in these 2 papers, our predictive models gave similar 
performance for the prediction of future values of FEV1. 
Our study added the prediction of prospective changes 
in FEV1 that were not reported in these previously 
published studies. Predicting the change over time is 
more challenging than simply predicting the future 
value, since the change typically represents a small 
proportion of the overall variance in a given pair of FEV1 
measurements separated by 5 years or less. However, it 
is important to assess the ability of models to predict 
prospective changes since this is an important outcome 
for clinical trials.

Given the superiority of non-linear models 
compared with linear models with regards to exploiting 
complex relationships and interactions among the 
risk factors,26 we chose random forest as our primary 
model due to its flexibility and generalizability, and the 
fact that the interpretation of decision trees are more 
natural to clinicians than some of the other black-box 
models. Despite hundreds of trees, the ensemble method 
(bagging) and the base learner (decision tree) in random 
forest are easier to understand and interpret than 
many other black-box models with more sophisticated 
ensemble methods (e.g., boosting) or base learners (e.g., 
kernels, neural networks).27 The similar performance of 
cross-validation and temporal validation attests to the 
generalizability of our models rather than overfitting, 
which would result in poor temporal validation 
performance compared to cross-validation performance. 
The sharp performance gap between predicting follow-
up FEV1 and (rate of) change in FEV1 seems nonintuitive 
at first glance. To explain this in other terms, imagine that 
a predictive model for change in height was developed 
for a cohort of adults. A model that predicted “height 5 
years from baseline” by simply substituting the baseline 
height value would be very accurate, since there is little 
to no change in adult height over that timeframe. While 
FEV1 does change over a 5-year timeframe, the absolute 
amount of change is usually small relative to baseline 
FEV1 volumes. Thus, predicting the total FEV1 in 5 years 
is a much easier (but less clinically relevant) problem 
than predicting the change in FEV1 over 5 years. The key 

rationale is that 5 years is a short time period in terms 
of COPD progression, leading to a high correlation of 
FEV1 values between 2 visits (therefore, high prediction 
performance with follow-up FEV1) and a low signal-to-
noise ratio in the FEV1 5-year progression measurements 
(hence, poor prediction performance with change in 
FEV1). Despite this, there may still be merit in modeling 
the change in FEV1 even with a short 5-year period, as 
we found a modest improvement in predicting follow-
up FEV1 using models built to predict change in FEV1 
that can then be transformed to follow-up FEV1 (median 
RMSE: 258.87 and 231.38 for follow-up FEV1 at Visit 
2 and Visit 3, respectively). This improvement could 
be attributed to the change in FEV1 models taking into 
account the uneven time lapse between visits. 

Random forests offer superior prediction of disease 
progression relative to linear regression, and this improved 
performance stems from the ability of these models to 
more efficiently capture non-linear interactions between 
predictors. The predictive accuracy of our models may 
potentially be further improved by including additional 
predictors (such as DLCO, pulmonary vascular measures, 
and relevant molecular biomarkers) and exploring other 
machine learning algorithms (such as deep learning). At 
present, these models are not ready for clinical use but 
could be useful in the design of COPD clinical trials to 
enrich the study populations by patients who are most 
likely to experience rapid disease progression and benefit 
from therapeutic interventions. For clinical use, better 
performing models that have been more extensively 
validated in multiple additional and relevant target 
populations are necessary. 

Rapid decline in lung function has previously been 
associated with a range of factors such as smoking 
exposure, bronchodilator reversibility, higher baseline 
FEV1, higher baseline FVC, exacerbations in the prior 
year, low body mass index (BMI), African American 
race, female sex, emphysema, upper lobe emphysema 
predominance, and CT-detected small airway 
abnormalities.5,6,8,28-33 Our study detected several of 
these known COPD disease progression risk factors and 
identified other new predictors for FEV1 decline. Our 
study is the first, to our knowledge, to demonstrate that the 
patterns of predictors vary by GOLD spirometric grade. 
The intriguing variations in the importance of different 
risk factors depending on the studied subgroup may help 
inform further exploration of predictive risk factors and 
future development of new risk prediction algorithms. 
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Compared to participants in the bottom quartile of ∆FEV1, 
those in the top quartile (rapid FEV1 progressors) had 
less severe spirometric impairment and more advanced 
radiologic disease (total emphysema and gas trapping) at 
baseline. It is possible that the association of less severe 
spirometric impairment at baseline with more rapid 
FEV1 progression is an artifact related to the inability to 
lose sufficient FEV1 at the same rate compared to when 
disease is more severe (a physiologic floor in FEV1 which, 
once reached, results in a diminished FEV1 response to 
additional cigarette exposure). It is also possible that the 
association between more severe emphysema with more 
rapid FEV1 decline may represent a “winner’s curse.” 
However, it is important to note that baseline FEV1 was 
accounted for in our analyses as this variable was among 
the predictors in the prediction models. In addition, the 
fact that our cross-validation and temporal validation 
performances are similar argues against the presence of 
large winner’s curse effects.

The relative unimportance of certain traditional 
risk factors such as COPD exacerbations in the prior 
year, selected comorbidities, race, and sex in our machine 
learning predictive models may be consistent with the 
disparate results from previous studies. For example, 
although some publications have suggested a significant 
excess loss of FEV1 for each COPD exacerbation,29,34,35 
others have reported minimal 6 or no relationship.36 
Such discrepancy may also result from differences in 
methodology between studies as well as differences 
in sample size, study duration, study population, and 
variable definitions. The relative unimportance of certain 
traditional risk factors in our models may also indicate 
that, while these risk factors may attain statistical 
significance in some models, they do not provide much 
additional predictive value after considering more 
important risk factors. 

Dimensionality and collinearity are important 
factors to consider in building and interpreting prediction 
models. While our data has a reasonable dimensionality 
in respect to the sample size, random forest performs well 
with high dimensional data.37 Collinearity is more of a 
challenge for interpreting the feature relevance ratings 
than the prediction performance. It is worth noting that 
the permutation-based feature importance scores we 
utilized in this study capture the marginal importance 
of a feature; additional approaches for capturing 
conditional/partial feature importance in the presence 
of associated features have been proposed.18 However, 

there is a heuristic component to these diverse feature 
importance scoring techniques, and there is currently 
no consensus or clear theoretical underpinning for 
them. It has been argued that there is a marginal-partial 
feature importance dimension, and the researcher must 
determine where he/she falls on this dimension based 
on his/her perspective on variable importance and the 
research question under consideration.38 

The random forest’s tunability of the number of trees 
hyperparameter has not been thoroughly investigated 
until recent years. For mean squared error loss in 
regression (and other loss functions in classification), it 
has been theoretically proven that increasing the number 
of trees does not lead to overfitting and that setting it to 
a computationally feasible large number is more favored 
than tuning the hyperparameter.39 Setting the number of 
trees to the default of 500 provided a good compromise 
between performance and computational efficiency in 
our datasets.

This study has a number of strengths. Analyses 
were performed within a well-characterized cohort that 
included participants at all stages of disease severity. In 
addition, by focusing on prediction rather than the study 
of individual risk factors, our results provide useful 
context regarding the relative importance of specific 
predictors. By constructing models in participants 
stratified by GOLD spirometric grade, we demonstrated 
that patterns of optimal predictors vary by specific disease 
outcome and GOLD grade. Validation of our findings in 
the temporal cohort represents another strength of our 
paper. 

Our study also has limitations. We only used 
2 measurements of lung function separated by 
approximately 5 years. The large sample size available 
helped to overcome some of the inherent challenges 
in low signal-to-noise ratio with studies of COPD 
progression over a relatively short period of time. 
However, with longer follow-up and more measurements 
in future studies, we will be better able to isolate 
measurement noise from real disease progression which 
will result in greater predictive accuracy. Our analysis 
was based on participants who had completed their 
second study visit, and it is possible that patients who 
were lost to follow-up differed from those available for 
analysis. Many of the patients with airflow obstruction 
were receiving therapy for their disease. Although no 
existing pharmacotherapy has been conclusively shown 
to affect the rates of disease progression, this still may 
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Random forest machine learning in conjunction with 
deep phenotyping improves the prediction accuracy of 
COPD progression. The present study improves our ability 
to identify patients at risk for rapid disease progression, 
and these models may be useful for the development of 
targeted disease-modifying therapies.
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