
439 Modeling FEV1 and FEV1/FVC Jointly for COPD

journal.copdfoundation.org   JCOPDF © 2022 Volume 9 • Number 3 • 2022

For personal use only. Permission required for all other uses.

Chronic Obstructive Pulmonary Diseases:

Journal of the COPD Foundation®

Predicting COPD Progression in Current and Former Smokers 
Using a Joint Model for Forced Expiratory Volume in 1 Second 
and Forced Expiratory Volume in 1 Second to Forced Vital 
Capacity Ratio
Matthew Strand, PhD1 Aastha Khatiwada, PhD1 David Baraghoshi, MS1 David Lynch, MB2 
Edwin K. Silverman, MD, PhD3 Surya P. Bhatt, MD4 Erin Austin, PhD5 Elizabeth A. Regan, MD, PhD6 
Aladin M. Boriek, PhD7 James D. Crapo, MD6

Original Research

Understanding baseline characteristics that can predict the progression of lung disease such as chronic obstructive 
pulmonary disease (COPD) for current or former smokers may allow for therapeutic intervention, particularly for 
individuals at high risk of rapid disease progression or transition from non-COPD to COPD. Classic diagnostic criteria 
for COPD and disease severity such as the Global Initiative for Chronic Obstructive Lung Disease document are based 
on forced expiratory volume in 1 second (FEV1) and FEV1 to forced vital capacity (FVC) ratio. Modeling changes in 
these outcomes jointly is beneficial given that they are correlated, and they are both required for specific disease 
classifications. Here, linear mixed models were used to model changes in FEV1 and FEV1/FVC jointly for 5- and 10-
year intervals, using important baseline predictors to better understand the factors that affect disease progression. 
Participants with predicted loss of FEV1 and/or FEV1/FVC of at least 5% tended to have more emphysema, higher 
functional residual capacity, higher airway wall thickness as measured by Pi10, lower FVC to total lung capacity ratio 
and a lower body mass index at baseline, all relative to overall cohort averages. The model developed can be used to 
predict progression for any potential COPD individual, based on demographic, symptom, computed tomography, and 
comorbidity variables.
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Chronic obstructive pulmonary disease (COPD) has 
classically been defined and its severity determined using 
Global initiative for chronic Obstructive Lung Disease 
(GOLD) criteria based on 2 continuous measures of lung 
function, forced expiratory volume in 1 second (FEV1) 
and FEV1 to forced vital capacity (FVC) ratio.1 Standard 
GOLD COPD spirometric grades involve FEV1/FVC< 0.7 
and FEV1 groupings based on cut-points at 80%, 50%, 
and 30% of predicted for GOLD 1–4 stages (see Figure 
1). Additionally, individuals with FEV1/FVC≥0.7 are 
often classified as GOLD 0 (if FEV1≥80 % of predicted) 
or preserved ratio-impaired spirometry (PRISm) (if 
FEV1<80% of predicted). Since individuals are classified 
into 1 of the 6 groups, based on both FEV1 and FEV1/FVC, 
it may be beneficial to model them simultaneously. 

Changes in lung function vary greatly across 
individuals with COPD; some experience greater 
declines while others do not. Understanding baseline 

Introduction

characteristics that can predict the progression of disease 
in smokers is important, as it may allow for timely 
therapeutic intervention, particularly for individuals 
at risk of rapid progression or progression from non-
COPD to COPD. Previous studies have focused on the 
development of prediction models individually for 
FEV1 or FEV1/FVC.2-8 Although these measures of lung 
function are related, they provide different information 
in terms of presence of disease and its severity. While 
FEV1/FVC has typically been used to simply classify 
individuals as having COPD or not, severity of disease has 
been primarily evaluated using FEV1. Here, we present 
a model for FEV1 and FEV1/FVC that can be used to 
predict joint changes in these outcomes after 5 and 10 
years based on a set of baseline demographic, computed 
tomography (CT), behavioral, and symptom predictors. 
This model provides prediction of joint change in FEV1 
and FEV1/FVC, which can then also be used to predict 
future GOLD classifications. To our knowledge, our 
prediction model is the first joint model that utilizes 
both FEV1 and FEV1/FVC to predict longitudinal clinical 
outcomes. We hypothesize that the proposed model will 
lead to improved inference for predicting changes in 
FEV1 and FEV1/FVC for those with or at risk for COPD.

The Cohort

The COPD Genetic Epidemiology (COPDGene®) cohort 
was established in 2007–2012, enrolling 10,198 smokers 
with and without COPD. Individuals were enrolled 
at 21 clinical centers under study protocols that were 
approved by each center’s institutional review boards. 
All participants provided written informed consent to 
participate in the study. Study details have been published 
previously.9

Participants in this analysis included PRISm, GOLD 
0, 1, and a subset of GOLD 2–3 individuals. Specifically, 
individuals above the diagonal in the scatterplot of 
FEV1/FVC versus FEV1 (post-bronchodilator) in Figure 1 
were included; GOLD categorizations were defined at 
baseline, i.e., Phase 1 (P1), unless noted otherwise. All 
individuals in GOLD 4 and some in GOLD 2–3 were 
excluded since the focus was on predicting disease 
progression for those who had not already substantially 
progressed by the baseline time point. Compared to the 
GOLD group boundaries that are incongruent with the 
direction of correlation between FEV1 and FEV1/FVC, the 
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diagonal line shown in the figure provides a more natural 
break between healthier and less healthy individuals 
with respect to FEV1 and FEV1/FVC. The boundary was 
chosen to be perpendicular to the direction of the cloud of 
points and intersects both horizontal and vertical GOLD-
defining dashed lines at 30%. Other diagonal lines could 
also be considered for inclusion/exclusion, such as one 
intersecting horizontal and vertical GOLD-defining 
lines at 50%. However, this would remove a substantial 
number of participants from analysis that are not within 

GOLD 3–4 classification. Similarly, moving the line down 
would begin to add more GOLD 3–4 participants who 
have more advanced disease.

Measuring Outcomes

FEV1 was measured in percentage of predicted, 
where the reference group used for calculations was 
the COPDGene non-smoking cohort (641 records; 
correlation between predicted and observed values: 
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r=0.994). Using percentage of predicted FEV1 allowed 
for easy comparisons involving GOLD classifications. 
FEV1/FVC used raw values of each variable in the ratio (not 
percentage of predicted), but the number was expressed 
as a percentage (i.e., [FEV1/FVC] x100) so that the 2 
outcomes were both expressed as percentages. Although 
this transformation is not essential for modeling, it allowed 
for easier interpretation for quantities such as Euclidean 
distance and angle, discussed next. The COPDGene 
nonsmoking cohort was used for reference equations for 
FEV1 because use of the standard Hankinson equations10 
led to a predictive model in which age was a significant 
predictor, demonstrating an unexpected protective effect 
of aging. The COPDGene-referenced data did not exhibit 
this, suggesting that the nonsmoking cohort may reflect a 
more representative reference group for our study.

Modeling Outcomes

The term “joint model” here is used to indicate a model 
that simultaneously fits FEV1 change and FEV1/FVC 
change, accomplished technically by considering them 
as repeated (or multiple) measures on participants in the 
linear mixed model,11 rather than as a bivariate outcome. 
The term joint model often refers to one that combines a 
survival model joined with a continuous outcome model. 
However, here we consider 2 outcomes that are both 
continuous and approximately normally distributed. Our 
joint model allows for separate variance estimates for each 
outcome as well as a covariance between them. The 2 
outcomes per participant are accounted for by including 
type as a predictor, plus interaction terms between type 
and other predictors in the model. Each participant has 2 
records used in the model, 1 associated with type=1 (for 
FEV1/FVC) and 1 associated with type=0 (for FEV1). This 
modeling approach can be used even if the outcomes 
have different units, although interpretation of a joint 
vector is easier if the units are the same. The joint model 
takes into account the positive correlation between FEV1 
and FEV1/FVC (see Figure 1), leading to more accurate 
inference for modeling magnitude and direction of lung 
function changes. Our model actually involves changes in 
FEV1 and changes in FEV1/FVC, which are also positively 
correlated.

Predictors of Progression

There were 46 predictors that were initially examined, 
including symptom, exacerbation, comorbidity, CT, 

demographic, lung function, genetic, and exercise 
variables (see Appendix A in the online supplement for the 
complete list). The primary continuous predictors in the 
final model included the following: level of emphysema, 
defined as the percentage of low attenuation areas less 
than a threshold of -950 Hounsfield units on CT scan 
(% emphysema); functional residual capacity (FRC), the 
volume remaining in the lungs after a normal, passive 
exhalation (estimated by chest CT);12,13 the ratio of FVC 
to total lung capacity (TLC), the latter measured by CT, 
which indicates obstructive lung disease;14 the square 
root of wall area of a standardized airway with 10-mm 
internal lumen perimeter (Pi10), a measure of airway 
wall thickening from CT;15 and body mass index (BMI) 
measured in kg/m2. There were also 3 binary predictors: 
smoking status (current/former), chronic bronchitis 
(presence/absence), and bronchodilator response (BDR), 
defined to be 1 if either FEV1 or FVC increased by at least 
0.2 liters and 12% from pre- to post-test, and 0 otherwise. 
The CT metrics were calculated using Thirona software 
(Thirona, the Netherlands).

Model Selection and Framework

There were 3 basic stages to model selection. In step 
1, automated stepwise selection methods were used to 
screen 46 variables in univariate models for FEV1 and 
FEV1/FVC. In step 2, a linear mixed model was fit using 
the variables selected in screening, plus interaction terms 
to account for the joint outcome (by including the type 
predictor to indicate whether the associated outcome 
was FEV1 or FEV1/FVC), and interaction terms to allow 
changes to depend on baseline FEV1 and FEV1/FVC. Terms 
were removed from the models using backward selection, 
starting with higher-order terms, until the optimal 
Akaike’s Information Criterion (AIC) was reached. In 
step 3, terms were (re)tested for inclusion in the model, 
including interactions between core predictors, based on 
AIC. Appendix B in the online supplement contains more 
detail on the model selection process.

An unstructured error covariance structure was 
included to account for the 2 outcome measures on 
participants (FEV1 change and FEV1/FVC change), 
allowing for separate variances by outcome and a 
correlation between the outcomes. A random intercept for 
study center was also included to account for correlation 
in responses between participants within centers.
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Results

Sample Sizes and Correlations

Among the original 10,198 study participants enrolled 
in COPDGene, 7990 had available baseline data for 
analysis; of these, 6413 were above the diagonal (Figure 
1), which comprises the cohort for analysis. Table 1 
shows a demographic summary of these participants. 
There were 3864 participants available for the 5-year 
model fit, and 1415 available for the 10-year model fit; 
the sample sizes were reduced due to loss to follow-up 
for spirometry at Phase 2 (P2) (approximately 5 years 
after baseline, or P1) or Phase 3 (P3) (approximately 10 
years after baseline). Predicted values were determined 
for the 6413 participants regardless of whether 
spirometry measures were available at P2 or P3, since all 
that is required to predict outcomes is the complete set of 
baseline predictors. The correlation between change in 
FEV1/FVC and change in FEV1 for the cohort was r=0.39 
for 5-year data and 0.43 for 10-year data. 

Summarizing Results

Results were characterized by magnitude and direction 
of change in FEV1 and FEV1/FVC using a transformation 
of the original variables. Magnitude was summarized 
using Euclidean distance (the straight length between 
2 points in 2-dimensional space defined by FEV1/FVC 
change on one axis and FEV1 on the other), and angle 
was determined using the arc-tangent function. More 
detail, including calculation of variances associated 
with predicted magnitude and direction are included 
in Appendix C in the online supplement. Due to the 
complexity of the model, results were summarized 
by grouping joint predicted values by direction and 
magnitude categories, separately for 5- and 10-year 
models. The following categories were used for visual 
display of grouped predicted vectors with magnitude16 
of at least 5%: upper right (UR), right upper (RU), right 
down (RD), down right (DR), down left (DL), left down 
(LD), left up (LU) and up left (UL), as shown in Figure 2 
(for 5-year changes). LD movement was associated with 
losses in both FEV1 and FEV1/FVC, but slightly more for 
FEV1, whereas DL also has losses in both, but slightly 
more for FEV1/FVC. Those with predicted magnitudes 
<5% (any direction) were not plotted but included in 
Tables S1 and S2 in the online supplement. 

Summary of Model Fits

Fitted models of 3864 participants demonstrated that after 
5 years, GOLD 0 and GOLD 2–3 participants generally 
had losses in both FEV1 and FEV1/FVC, while PRISm 
participants tended to primarily lose FEV1/FVC, and 
GOLD 1 primarily lost FEV1. However, by 10 years, some 
expected loss in FEV1 was observed for PRISm participants 
and FEV1/FVC loss for GOLD 1 participants (based on 
1415 participants). Generally, direction and magnitude 
of progression depended on baseline values of FEV1 and 
FEV1/FVC as well as specific participant characteristics. 
Initial regression fits of individual outcomes (FEV1 
change and FEV1/FVC change) using stepwise selection 
yielded goodness-of-fit measures17 shown in Table 2. 
Also included in this table are goodness-of-fit measures 
for the joint models. Pseudo R2 values for change-score 
models were 0.18 and 0.25 for the 5- and 10-year model 
fits, respectively, while they were at or above 0.80 for 
visit-specific outcome models (see Discussion for more 
detail). The relative strengths of the core predictors in 
the joint models are shown in Table 3. The results show 
that % emphysema, FRC, Pi10, and BMI were strong 
predictors of 5-year change, but also relatively strong 
in 10-year models, with BMI notably consistent between 
time frames. FVC/TLC, current smoking status, and BDR 
were strong in 5-year models but somewhat less so in 10-
year models, while chronic bronchitis had a smaller but 
consistent contribution for the 5- and 10-year models. 
Some differences could be affected by the types of terms 
in the model for a given predictor (e.g., polynomial or 
certain interactions), which is reflected in the numerator 
degrees of freedom (DF). Model-based correlation 
between changes in FEV1 and changes in FEV1/FVC 
were 0.41 and 0.46 for 5- and 10-year models, slightly 
higher than those derived based on descriptive statistics. 
Appendix D in the online supplement shows parameter 
estimates for predictors in both 5- and 10-year change 
models.

Summarizing Predicted Values

Figure 2 shows the distribution of predicted values of 
5-year change by direction, for those with predicted 
changes of at least 5% for the FEV1 and FEV1/FVC joint 
vector, stratified by GOLD group (see Figure S1 in the 
online supplement for 10-year change graph). As an 
example, the joint vector for a participant with predicted 
losses of 3% in FEV1 and 4% in FEV1/FVC would have 
a vector length equal to the square root of 3%2+4%2, 
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or 5%, based on Euclidean distance. The majority of the 
predicted values with a change of at least 5% move to the 
left and down (LD), indicating an expected loss in both 
FEV1 and FEV1/FVC. (Both outcomes have percentage 
units, although FEV1 naturally has greater variability, 
which may explain why the greater expected change 
is with respect to FEV1 rather than FEV1/FVC.) Those 
in GOLD 1 and 2–3 have the highest percentage with 
expected changes of at least 5% moving left and down.

Figures S2 and S3 in the online supplement show 
a summary of the distribution of predicted values using 
density plots, overall and stratified by GOLD group, 
respectively. A value at the origin represents no predicted 
change in FEV1/FVC (y-axis) and FEV1 (x-axis). Both 
panels show that the center of the distributions are in the 

lower-left quadrants, showing some predicted losses in 
both FEV1 and FEV1/FVC. However, tails of the distribution 
do extend back into positive values for either FEV1 (lower 
right quadrant), FEV1/FVC (upper left quadrant), or both 
(upper right quadrant), suggesting that improvement 
for some participants is possible. Greater variability in 
predicted values is apparent in the distribution for 10-
year predicted values, more noticeably for FEV1.

Factors Associated with Progression

Figure 3 demonstrates factors associated with predicted 
directional movement in FEV1 and FEV1/FVC for 5-year 
data; Figure S4 in the online supplement shows similar 
graphs for 10-year data. These plots show average 
participant z-scores for each variable at baseline, by 
predicted direction and GOLD groups; z-scores were 
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used to allow for meaningful comparisons between 
variables. The graphed data are simply baseline data, 
classified based on directions of predicted outcomes 
derived from the linear mixed model fits. Bars extending 
away from the circle indicate greater than average 
baseline values for the associated variables (the longer 
the bar, the greater the average z-score), while those 
pointing back towards the circle origin reflect less than 
average values for the associated variables (i.e., negative 
z-scores). The z-scores were determined based on overall 
averages for the cohort. Those with predicted changes 
of at least 5% in magnitude (per 5 years) were included 

so that characteristics of those with higher expected 
progression could be identified, which correspond to 
one-third and one-fifth of the cohort for 5- and 10-year 
changes, respectively. (Average predicted magnitude of 
change was greater for 10-year data than 5-year data, 
but not after standardizing per 5 years.) Although not 
graphed, characteristics of participants with predicted 
vectors less than 5% in length are shown in Tables S1 
and S2 in the online supplement. 

Overall, there are some common characteristics 
shown in the graphs in Figure 3. Those expected to lose 
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FEV1/FVC (downward movement in graph) had lower 
baseline FVC/TLC, particularly for PRISm and GOLD 
2–3, while predicted upward movement was associated 
with higher baseline FVC/TLC, particularly for GOLD 0 
and 1. Greater predicted losses in FEV1 (movement left) 
but increases in FEV1/FVC were associated with higher 
baseline BDR rate. Predicted losses in FEV1 were associated 
with higher current smoking rates. The impact of % 
emphysema and FRC was more noticeable for GOLD 1 and 
GOLD 2–3, where those predicted to move left and down 
had higher baseline averages. Higher Pi10 and chronic 
bronchitis rates were associated with more predicted 
losses in FEV1 and FEV1/FVC for PRISm and GOLD 2–3. 
Higher BMI was associated with less pulmonary decline; 
GOLD 0–3 participants with lower BMI generally had 
greater predicted losses in FEV1 and FEV1/FVC, while 
PRISm participants with predicted increases in FEV1 had 
relatively high BMI. Expected movement down and to the 
right is not expected for GOLD 1 since they have relatively 
high FEV1 but relatively low FEV1/FVC at baseline (i.e., 
they are already in the lower right with respect to Figure 

1). Similarly, predicted changes to the upper left are not 
expected for PRISm. Patterns shown in Figure S4 in the 
online supplement for 10-year predicted changes are 
similar, although directions represented were fewer and 
more concentrated. 

As described earlier, predicted values were 
converted to magnitude and angle for each participant, 
for both 5- and 10-year models. Table S3 in the online 
supplement demonstrates these predicted values for 
4 participants, along with baseline characteristics as 
well as observed and predicted changes for FEV1 and 
FEV1/FVC. Participant 1 started in GOLD 1 and had a 
high predicted loss in FEV1 but lower for FEV1/FVC, 
resulting in low angles (13.5° and 8° for 5 and 10 years, 
respectively), with predicted magnitudes above 5% for 
both time frames. Participants 2 and 4 had smaller 
predicted changes over time for both FEV1 and FEV1/
FVC. Participant 3 had higher predicted loss in FEV1/
FVC than FEV1 at 5 years (angle=72.4°), but relatively 
equal predicted losses by 10 years (angle=50.3°), 
with magnitudes surpassing 5% by 10 years. Table S4 
in the online supplement shows average vector length 
(magnitude) and angles for 5- and 10-year models for 
the entire cohort, and then by GOLD classification. 
Groups with the largest predicted changes were in GOLD 
1 and 2. Average angle for predicted vectors was low for 
GOLD 1 (reflecting more expected FEV1 loss than FEV1/
FVC), and higher for PRISm (reflecting more expected 
FEV1/FVC loss than FEV1). GOLD 0 had relatively equal 
predicted losses in FEV1 and FEV1/FVC, reflected by the 
average angle of 44° for 10-year changes.

Tables S5 and S6 show movement in the GOLD 
groups after 5 years and 10 years, based on both 
observed changes and predicted changes in FEV1 and FEV1/
FVC. The higher percentages for off-diagonal entries 
for observed changes reflect the inherent variability in 
spirometry measures. The predicted changes iron out 
some of this variability, leading to fewer participants 
with predicted movement backwards, e.g., from GOLD 
1 to GOLD 0. While the majority of participants are not 
predicted to change GOLD classification over 10 years, 
2% to 6% are expected to move from each of GOLD 0 
to GOLD 1, PRISm to GOLD 2, and GOLD 1 to GOLD 2. 
Note that while multiple measurements are necessary for 
observed changes, predicted changes can be calculated 
for participants with only baseline data using the fitted 
model, which explains why more data are available for 
the latter.
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The proposed model allows for joint inference for changes 
in FEV1 and FEV1/FVC. Up to this point, prediction 
models have been developed for one outcome or the 
other, but not both simultaneously, to our knowledge. 
Our proposed model allows for joint inference, but 
results for one outcome or the other can also be derived 
from this model; results presented here suggest that such 
derived models are at least as good as those based on fully 
univariate models. However, one of the clear benefits 

of the joint model is that inference for magnitude and 
direction of joint change will be improved over those 
built upon univariate models, since these transformed 
outcomes involve both outcomes simultaneously, and 
they are correlated. Specifically, estimates are expected 
to be more accurate and confidence intervals shorter 
with the joint model approach.

Understanding baseline characteristics that predict 
changes in FEV1 and/or FEV1/FVC is important, as these 
2 variables are used to jointly characterize the severity 
of COPD. Knowledge of specific characteristics will help 

Discussion
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clinicians know who to target for potential therapeutic 
intervention. As participants have specific starting 
points in defined GOLD groups, the models allow us 
to determine whether the predicted changes will move 
them between categories, although the actual predicted 
values themselves retain the most information. These 
models provide only one type of predicted information 
and can be combined with other predictive models to 
help clinicians and patients manage their health and 
understand who is at greater risk for progression of 
disease. The results could also be used as a first step 

to help elucidate understanding of disease subtypes. 
Although the model was not designed to determine 
impact of modifying participant behavior, it is possible 
that results here will motivate patients to modify certain 
behaviors (e.g., to quit smoking).

Some limitations of this work are that in practice, 
not all predictors may be available to calculate predicted 
values for participants and CT variables may be based 
on different algorithms. It is possible that another set of 
predictors will be found to be more optimal for other 
cohorts. Different model selection techniques may yield 
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different results. For example, LASSO regression tends 
to select predictors more stringently. In some respects, 
the work here may be foundational. The methods 
demonstrated could be applied similarly for models with 
other participants, predictors, and outcomes. Another 
limitation of the work is that model estimates could 
be impacted by those lost to follow-up, particularly for 
the 10-year change data. However, we did find that 
the average baseline age of those used to fit the 5-year 
model was 59.22 years, compared with 58.74 years 
for those used to fit the 10-year model, suggesting age 

had minimal impact on loss to follow-up. We applied 
inverse weighting and multiple imputation techniques to 
longitudinal models for FEV1, 6-minute walk distance, 
and symptom scores (see Ragland et al)18 and found 
progression estimates to be similar to those without them. 
However, we found that participants who died after P2 
tended to have greater health declines between P1 and 
P2 in the aforementioned outcomes, relative to those 
still alive after P2. Importantly, our models have allowed 
interactions between smoking status and time, allowing 
unique progression estimates by current/former status, 
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which help to minimize impact of differential dropout 
due to this factor.

Goodness-of-fit measures presented here ranged 
from 0.18 to 0.25 for joint outcome changes between 
visits, and between 0.80 and 0.82 for visit-specific 
outcomes (P2 or P3) that use the baseline measure as 
a predictor. Change scores are naturally relatively more 
difficult to predict than the visit-specific outcomes, since 
they subtract out between-participant variability that 
can be predicted by the baseline FEV1. Bouiez et al7 also 
demonstrate this in their analysis, where R2 values for 

change ranged from 0.10 to 0.15 for change in FEV1 
(over 5 years), and 0.90 for a future FEV1 value (0.91 
for a temporal validation cohort). Chen et al5 presented 
predictive models for a future FEV1 value that yielded 
similar R2 values (between 0.79 and 0.91 for main study 
and validation cohorts) and for FEV1/FVC less than lower 
limit of normal (C-statistic of 0.76 for the main study). 
Their study involved the Framingham Offspring Cohort 
to examine those at risk of developing COPD. Participants 
had longer follow-up (average follow-up of 20 years) and 
predictors included demographics as well as measures 
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from blood samples. One likely reason for lower R2 values 
in our study (considering prediction of future FEV1) was 
due to the restricted cohort we considered that removed 
those below the diagonal in Figure 1, and thus spanning 
a smaller scale of measures for both FEV1 and FEV1/FVC. 
There may also be predictive benefit to using model selection 
techniques with random forests rather than standard 
regression approaches. For purposes of this analysis, 
we wanted to retain a limited set of concrete predictors 
with specific coefficients; although future efforts may 
consider other model selection techniques such as those 
based on machine learning.

The models presented here suggest a protective 
effect of higher BMI; those in PRISm who were predicted 
to have improvements in FEV1 had higher than average 
BMI, and those in other groups had predicted losses 
in FEV1 with below average BMI. Cachexia (related 
to low BMI) has been recognized as a potential cause 
for increased mortality risk among COPD patients,19 
although the impact of higher BMI on lung function in 
COPD has not been reported until more recently. Sun et 
al20 showed that even relatively high BMI was associated 
with less reduction in FEV1 through meta-analysis. In 
survival models, we also showed that higher BMI was 
associated with lower mortality risk until relatively high 
values (after adjusting for negative health effects of BMI 
via predictors such as 6-minute walk distance).21 One 
possible explanation for this potential protective effect 
was reported by Ora et al22 who observed a larger 
inspiratory capacity and lower operating lung volumes 
in obese COPD compared with normal weight FEV1 
matched participants. In addition, Taher et al23 showed 
that mild-to-moderate obesity can result in chest wall 
strapping and hence, reduced pulmonary compliance 
and improved airflow, thus, partially offsetting the loss 
of elastic recoil due to emphysema.

For CT metrics, Fortis et al14 showed that lower FVC/
TLC was associated with more obstruction as measured 
by FEV1/FVC. Higher FRC is indicative of air trapping.12 
Increased airway wall thickening, as measured by 
Pi10, may result in narrower airway lumen and hence 
airflow obstruction as measured by FEV1 and FEV1/FVC. 
Based on these findings, it is not surprising that lower 
FVC/TLC and higher Pi10 and FRC are associated with 
greater predicted losses in lung function. Our results 
show how these CT metrics, along with % emphysema, 
are associated with FEV1 and FEV1/FVC. Losses in both 
FEV1 and FEV1/FVC were apparent for those with higher 

baseline emphysema, mainly for GOLD 1–3 groups; 
FVC/TLC was mainly associated with losses in FEV1/FVC; 
increased Pi10 and FRC were associated with losses in 
both FEV1 and FEV1/FVC, mainly for PRISm and GOLD 
2–3 participants. Among other variables, current smoking 
was associated with greater losses in FEV1 (relative to 
former smokers), and BDR was associated with greater 
predicted losses in FEV1, but improvement in FEV1/FVC. The 
latter may be partially explained by more air trapping 
with greater airflow obstruction and hence, a decreased 
operative FVC (pseudo-restriction). Chronic bronchitis 
appeared to be more related to FEV1/FVC than FEV1.

Predicted values are not expected to be perfect 
measures of change for individuals. However, there are 
some benefits of focusing on predicted changes rather 
than observed changes for individuals. First, they help to 
address the high variability that is inherent to spirometry 
measurements by estimating expected (or average values) 
using a set of baseline predictors. Second, predicted 
values can be obtained for individuals with no follow-
up measurements; once the model is fit using observed 
changes from available individuals, predicted changes 
can be estimated for any individual with baseline data. 
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