Original Research

Disparities in Guideline Concordant Statin Treatment in Individuals with Chronic Obstructive Pulmonary Disease

Jamuna K. Krishnan, MD, MBA, MS¹ Sonal G. Mallya, MD²,³ Musarrat Nahid, MSc³ Aaron D. Baugh MD⁴ MeiLan K. Han MD, MS⁵ Kerri I. Aronson MD, MS¹ Parag Goyal MD, MS³,⁶ Laura C. Pinheiro, MPH, PhD³ Samprit Banerjee PhD⁷ Fernando J. Martinez MD, MS¹ Monika M. Safford, MD³

¹ Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York, United States
² Division of Pulmonary and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
³ Division of General Internal Medicine, Weill Cornell Medicine, New York, New York, United States
⁴ Division of Pulmonary, Critical Care Allergy and Sleep Medicine, University of California San Francisco, San Francisco, California, United States
⁵ Division of Pulmonary and Critical Care Medicine, University of Michigan Health System, Ann Arbor, Michigan, United States
⁶ Division of Cardiology, Weill Cornell Medicine, New York, New York, United States
⁷ Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, United States

Address correspondence to:
Jamuna K. Krishnan, MD
Division of Pulmonary and Critical Care Medicine
Weill Cornell Medicine
1305 York Avenue Y-1047, Box 96
Phone: (646) 962-2333
Email: jkk9002@med.cornell.edu

Running Head: Statin Treatment Disparities in a COPD Cohort

Keywords: cardiovascular disease, COPD, comorbidity, health delivery

Abbreviations:

CVD = cardiovascular disease
COPD = chronic obstructive pulmonary disease
REGARDS = Reasons for Geographic and Racial Differences in Stroke
LDL-C = low density lipoprotein cholesterol
ECG = electrocardiogram
ATP III = Adult Treatment Panel III
CHD = coronary heart disease
FRS = Framingham Risk Score
HDL-C = high density lipoprotein cholesterol
HPSA = Health Professional Shortage Area
PCS = Short Form 12 Physical Component Summary (PCS) score
CES-D = Centers for Epidemiology Studies-Depression scale
BMI = body mass index
PR = prevalence ratio
OR = odds ratio
MI = myocardial infarction
CABG = coronary artery bypass graft
FFS = Medicare Fee for Service

Funding Support:

This research project is supported by cooperative agreement U01 NS041588, co-funded by the National Institute of Neurological Disorders and Stroke (NINDS), the National Institute on Aging (NIA), and the National Institutes of Health, Department of Health and Human Services. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NINDS or the NIA. Representatives of the NINDS were involved in the review of the manuscript but were not directly involved in the collection, management, analysis, or interpretation of the data. The authors thank the other investigators, the staff, and the participants of the REGARDS study for their valuable contributions. A full list of participating REGARDS investigators and institutions can be found at: https://www.uab.edu/soph/regardsstudy/. Additional funding was provided by the National Heart Lung and Blood Institute, grant R01HL080477 (Safford). This work is supported by the National Institutes of Health T32-HL134629, and the Weill Cornell Dean’s Diversity and Healthcare Disparities Research Award, and the Donna Redel Research Fund.

Date of Acceptance: | Published Online Date: July 5, 2023

Citation: Krishnan JK, Mallya SG, Nahid M, et al. Disparities in guideline concordant statin treatment in individuals with COPD. *Chronic Obstr Pulm Dis.* 2023; Published online July 5, 2023. https://doi.org/10.15326.jcopdf.2023.0395
ABSTRACT

Rationale: Cardiovascular disease (CVD) affects prognosis in chronic obstructive pulmonary disease (COPD). Black women with COPD have a disproportionate risk of CVD-related mortality, yet disparities in CVD prevention in COPD are unknown.

Objectives: We aimed to identify race-sex differences in the receipt of statin treatment for CVD prevention, and whether these differences were explained by factors influencing healthcare utilization in the REasons for Geographic And Racial Differences in Stroke (REGARDS) COPD sub-cohort.

Methods: We conducted a cross-sectional analysis among REGARDS Medicare beneficiaries with COPD. Our primary outcome was the presence of statin on in-home pill bottle review among individuals with an indication. Prevalence ratios (PR) for statin treatment among race-sex groups compared to White men were estimated using Poisson regression with robust variance. We then adjusted for covariates previously shown to impact healthcare utilization.

Results: Of the 2,032 members within the COPD sub-cohort with sufficient data, 1,435 participants (19% Black women, 14% Black men, 28% White women, and 39% White men) had a statin indication. All race-sex groups were less likely to receive statins than White men in unadjusted models. After adjusting for covariates that influence healthcare utilization, Black women (PR 0.76, 95% CI 0.67-0.86) and White women (PR 0.84 95% CI 0.76-0.91) remained less likely to be treated compared to White men.

Conclusion: All race-sex groups were less likely to receive statin treatment in the REGARDS COPD sub-cohort compared to White men. This difference persisted in women after controlling for individual healthcare utilization factors, suggesting structural interventions are needed.
INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of death in patients with COPD, with estimates identifying CVD as the underlying cause of death in 20%-30% of patients in varying COPD cohorts.1–3 Individuals with COPD are 2-5 times more likely to have major CVD.4–6 Individuals with COPD and comorbid CVD are at increased risk for COPD-related ER visits, hospitalization, and office visits compared to individuals with COPD alone.7

Black women with COPD have a 44% higher risk of CVD-related mortality compared to White women, driven by the disproportionate burden of CVD risk factors among Black women.8 Given the increased risk of CVD mortality among Black women with COPD, identifying disparities in treatment of CVD risk factors in a COPD population could serve as a potentially modifiable target to improve mortality outcomes among Black individuals.

Statins are used for the prevention of CVD events and have been shown to reduce the risk of future major CVD events and to decrease all-cause mortality.9,10 Among persons with elevated low-density lipoprotein cholesterol (LDL-C) in the general population, Black individuals are less likely to be treated with statins than their White counterparts, even after multivariate adjustment including health insurance status and age.11 While prior data demonstrates suboptimal control of CVD risk factors in COPD,12 it is unknown whether treatment disparities seen in the general population are also present in a COPD population. Having multiple comorbidities, as is typical in patients with COPD, has been shown to lead to quality of care deficiencies.13 These deficiencies could be magnified among Black individuals living with COPD, who have known structural barriers to healthcare access.14–17
To quantify treatment with statins among adults with COPD, we conducted a cross-sectional analysis of The REasons for Geographic And Racial Differences in Stroke (REGARDS) cohort, which is well-suited to study healthcare disparities given its large size, national reach, rich baseline data, and oversampling of the Black community dwelling population. Our objectives were to (1) determine if there are differences in statin treatment between race-sex groups among those with COPD and (2) determine if observed differences can be explained by factors influencing health services utilization. We hypothesized that White men would be the most likely to receive statin treatment compared to other race-sex groups, and this disparity would not be explained by individual factors posited to account for differences in healthcare utilization.

METHODS

Study Design

REGARDS is a national, prospective observational cohort study designed to examine causes of regional and racial differences in stroke mortality. Participants were enrolled between 2003 and 2007 using commercially available listings to recruit community-dwelling Black and White adults aged ≥ 45 living in the continental U.S, with oversampling from the Black population. Baseline data were collected through computer-assisted telephone interviews assessing medical history and health status as well as in-home visits by trained health professionals. In-home visits followed standardized, quality-controlled protocols to obtain physical measurements, electrocardiograms (ECGs), blood and urine specimens, and medication information via in-home pill bottle review. All data used in our analyses were obtained from the telephone interview and in-home visits which occurred at the time of enrollment between 2003 to 2007. This study was approved by the University of Alabama at Birmingham and Weill Cornell
Medical College’s Institutional Review Board (protocol #1603017100) and all participants provided informed consent.

Study Sample

We previously identified evidence of diagnosed COPD among REGARDS participants who were Medicare beneficiaries at time of REGARDS enrollment. A diagnosis of COPD was determined using a modified previously validated algorithm for identifying COPD in administrative claims records. A participant was identified as having COPD if they had any inpatient hospitalization with a COPD-specific diagnosis code (ICD-9 491.x, 492.x, and 496) in any position or a COPD-specific diagnosis code on two outpatient claims from different service dates.

Among participants with diagnosed COPD, we identified those with an indication for statin for prevention of CHD. Indication for statin treatment was defined by the Adult Treatment Panel III (ATP III) of the National Cholesterol Education Program guidelines that were current at time of REGARDS enrollment, or by already being on statin treatment, consistent with prior REGARDS studies.

The ATP III criteria identify LDL-C targets based on future risk of coronary heart disease (CHD). Individuals with a CHD risk equivalent (presence of CHD, diabetes, or prior vascular disease) are at highest risk. Prior vascular disease was detected by self-reported history of stroke, heart attack, abdominal aortic aneurysm, peripheral arterial disease, or coronary revascularization procedure or by evidence of myocardial infarction on baseline ECG. Diabetes was present if participants were treated with diabetes medication or had a fasting glucose ≥ 126 mg/dL or non-fasting glucose of ≥ 200 mg/dL.
For those without a CHD risk equivalent, ATP III assigns points based on other risk factors which determine the 10-year Framingham Risk Score for CHD (FRS). Those with CHD risk equivalent(s) or FRS>20% had an LDL-C goal of <100 mg/dL. The FRS 10-20% category had an LDL-C goal of <130 mg/dL. The FRS <10% category had an LDL-C goal of <160 mg/dL, or <130 mg/dL if two or more of the following risk factors were present: (1) hypertension (>140/90 mmHg or on antihypertensive medications); (2) current smoking; (3) male sex; (4) age >45 years for men and >55 years for women; (5) family history of myocardial infarction at age <55 years in first-degree male relative or <65 years in first-degree female relative; or (6) high density lipoprotein cholesterol (HDL-C) <40 mg/dL. If a participant had a LDL-C level greater than or equal to the LDL-C goal for a particular risk category, they were determined to have an indication for statin therapy.

Primary Outcome:

The primary outcome was receipt of statin therapy among those who had an indication, based on in-home pill bottle review. The in-home pill bottle review consisted of asking participants to gather all prescription and non-prescription medication taken within the last two weeks. These medication names were then recorded by a study staff member on a medication data collection form.

Key Explanatory Variables:

The key explanatory variables were self-reported race (Black vs. White) and sex (Male vs. Female). Race and sex were analyzed together as four race-sex groups: Black women, Black men, White women, and White men. White men were designated the reference group since previous studies have shown that White men are more likely to be treated with statins than other race-sex groups despite similar indications.11
Covariates

Aday and Andersen proposed that predisposing, enabling, and need-related factors may influence individual health services utilization. Predisposing factors are characteristics of the individual or community that exist prior to the individual’s illness, such as age. Enabling factors increase the likelihood of health services use, such as access to transportation or insurance. Perceived need factors reflect an individual’s perception that a particular healthcare resource is necessary. Observed need factors are those assessed by a healthcare professional (i.e. elevated Framingham risk score), that would lead a physician to recommend a health resource.

In the current analysis, predisposing factors included age, educational attainment (less than high school education, high school education, or above), residence in a Health Professional Shortage Area (HPSA), residence in a state with least public health infrastructure, and residence in a zip code with high poverty level (>25% residents living below the federal poverty line), and stroke region. Enabling factors included social isolation (reporting not having close friends or family members or not seeing them at least once a month) and poor social network (reporting having no one to take care of them should they become ill or disabled). Perceived need factors included awareness of hyperlipidemia (reporting having been told by a doctor that they have high cholesterol or an abnormal level of fats in their blood), medication adherence (assessed by a validated 4-item scale), current smoking status, and physical functioning, as reflected in the Short Form 12 Physical Component Summary (PCS) score. Observed need included CHD risk category, depressive symptoms as reflected by a score ≥ 4 on the 4-item Centers for Epidemiology Studies-Depression (CES-D) scale, HDL-C ≤ 60mg/dL, and body mass index (BMI) ≥ 30kg/m². Presence of depressive symptoms was included as an observed
need variable due to prior studies that have demonstrated an association between depression and incident cardiovascular disease.28–30

Statistical Analysis

Among individuals with diagnosed COPD and a statin indication, we described baseline characteristics among race-sex groups (Black women, Black men, White women, White men). The proportion of all individuals with a statin indication who received treatment was compared across four race-sex groups.

Because the primary outcome (presence of statin medication during in-home pill bottle review) was common, prevalence ratios (PR), rather than odds ratios (OR), were estimated for statin treatment across race-sex groups using sequential Poisson regression models with robust variance.31,32 The first model included race-sex groups with White men as the reference category (Model 0). Predisposing covariates (age, educational attainment, stroke region, residence in a HPSA, residence in a state with least public health infrastructure, residence in a zip code with high poverty level, stroke region) were added to Model 0 to create Model 1. Enabling factors (social isolation and poor social network) were added to the Model 1 covariates to create Model 2. Perceived need factors (awareness of hyperlipidemia, medication adherence, current smoking, PCS score) were added to Model 2 covariates to create Model 3. Finally, observed need factors (CHD risk category, CES-D ≥4, HDL-C ≤60mg/dL, and BMI>30) were added to Model 3 to construct Model 4. We used multiple imputation by chained equations to impute missing covariates.33 The covariates with the most missing data were the PCS score, for which 112 participants (7.8%) had missing data, and social isolation, for which 82 participants (5.7%) had missing data. The proportion of the sample with any missing information was 24%.
We also determined the proportion of individuals receiving indicated statin treatment by race and sex among the following prespecified groups: (1) participants without prior CVD history who had an indication for primary prevention to prevent the development of future CVD (2) participants with prior CVD and who therefore have an indication for secondary prevention (3) participants age <75 years of age. We performed a subgroup analysis including only participants age <75 years because clinical trials historically have included fewer people over 75 years of age, which may affect prescribing practices.34,35 Prior CVD was defined as self-reported history of myocardial infarction (MI) or evidence of MI on ECG, self-reported history of coronary artery bypass graft (CABG) surgery, angioplasty, stenting, procedure to fix the arteries in the neck or the legs, stroke, or abdominal aortic aneurysm. All analyses were carried out using STATA, version 17 (StataCorp, College Station, TX). The threshold for statistical significance was p<0.05.

RESULTS

Participant characteristics:

Of the 2,148 REGARDS participants with a diagnosis of COPD using Medicare Fee-For-Service (FFS) claims data at the time of enrollment in REGARDS, 116 (5.4%) participants had insufficient data to determine whether they should be on a statin. As such, these individuals were excluded. Of the remaining 2,032 participants, 1,435 (70.6%) had an indication for statin treatment (Figure 1). Among these 1,435 participants, 19% were Black women, 14% Black men, 28% White women and 39% White men. The characteristics of the sample by race-sex group are shown in Table 1. Black men and women were more disadvantaged when comparing several of the variables representing predisposing factors to healthcare utilization. When examining variables representing perceived and observed need for health services, White women had the
highest proportion of current smokers (26.9%). Black women had the highest proportion of
individuals with BMI>30 (57.4%) as well as depressive symptoms (23.8%). However, Black
women had more favorable HDL-C levels (only 67.4% of Black women with HDL-C ≤60
compared to 89.9% of White men).

Receipt of Statins by Race and Sex:

Of the 1,435 REGARDS participants with diagnosed COPD and an indication for statin,
859 participants (59.9%) were treated. Black women had the lowest proportion of statin
treatment (49.6%) compared to the other race sex groups (54.4% of Black men, 59.6% of White
women, and 67.0% of White men) (*Figure 2*).

Among these 1,435 participants, 593 (41.3%) had no prior history of CVD and a statin
was indicated for primary prevention, and 812 participants (56.6%) had prior CVD history
necessitating a statin for secondary prevention. Black women for whom a statin is indicated for
primary prevention remain the least treated group. Even among the subgroup with established
CVD who require statin for secondary prevention, the proportion of Black women treated was
18.1% less than that of White men (*Figure 2*).

Table 2 presents the unadjusted and sequentially adjusted PRs for treatment with
indicated statin for each race-sex group compared with White men. Each race-sex group was less
likely than White men to receive an indicated statin in the unadjusted model. Prevalence of
 treatment with statin for Black women with statin was 26% lower than White men, (PR 0.74
[95% CI 0.65-0.85]) and numerically lower than other race-sex groups. After adjusting for
factors influencing healthcare utilization based on the Andersen model, both White women and
Black women had lower PRs for treatment compared to White men. In contrast, after adjusting
for perceived need factors (awareness of hyperlipidemia, medication adherence, current
smoking, and physical functioning), the decreased PR for statin receipt comparing Black vs White men lost statistical significance. The fully adjusted PR comparing White women vs White men was 0.84 [95% CI 0.76-0.91]. The PR comparing Black women vs White men was 0.76 [95% CI 0.67-0.91].

Prespecified Subgroup Analysis:

In the analysis among the subgroup that was age <75 at time of enrollment (n=901), results were similar, with the fully adjusted model showing that White women (PR 0.83 [95% CI 0.74-0.92]) and Black women (PR 0.77 [95% CI 0.66-0.90]) were less likely to be treated with statins than White men among those who had an indication (Table 3).

DISCUSSION

Black women with COPD are at increased risk for CVD-related mortality, but to our knowledge, no studies have assessed differences in the receipt of primary and secondary CVD prevention among persons with COPD by race and sex.8 Our results show that among women, especially Black women, were less likely to receive statin treatment for both primary and secondary prevention. This difference persisted even after adjusting for predisposing, enabling, and need factors that influence healthcare utilization. Although there were significant differences between Black women and White men in factors that we hypothesized to influence healthcare utilization, such as education level and residing in a health professional shortage area, these covariates had little effect on our findings. These data suggest that changes are needed on a health system level in terms of how care is delivered to individuals with multiple chronic conditions and social disadvantage.

While the disparity in statin treatment by race is consistent with findings from the general population, the treatment gap between Black women and White men is wider in our REGARDS
COPD population compared to the general REGARDS population. The overall difference in statin treatment between Black versus White individuals has been reported to range between 5-15% in multiple cohorts, which is consistent with the 12% difference we identified here by race. However, when looking at differences by race and sex, an important example of intersectionality, the disparities are worse in the COPD population. An analysis of the general REGARDS population by Schroff et al. identified a crude 9% difference in proportion treated between White men and Black women. In our COPD population, this disparity is nearly double, with a 17% difference. Despite the increased risk of CVD in the COPD population, our results suggest that disparities in therapies for CVD risk reduction in this population are even worse.

The finding of worse disparities in CVD prevention within the COPD population may be due to the complexity of managing multiple comorbidities combined with barriers to accessing healthcare in the Black population. Our findings indicate that disparities in CVD prevention are even worse with comorbid COPD compared to diabetes, another chronic disease. Multiple mechanisms may influence why the disparity is worse in patients with COPD compared to the diabetes populations. Having multiple chronic conditions may decrease the likelihood of receiving guideline concordant care for each condition when they are seemingly unrelated. For example, patients with chronic lung disease were less likely to receive treatment for arthritis, likely due to these conditions being viewed as unrelated. In this case, diabetes may be more clearly perceived by clinicians to be related to CVD, as diabetes is well recognized as a major CVD risk factor.

Another reason that comorbid conditions result in decreased guideline concordant care is that symptoms from one condition compete with another for time and attention. This situation
is exacerbated among patients who have social barriers to care. COPD often creates symptoms of shortness of breath that may crowd out attention to preventive interventions. This study points to the need for innovative interventions to proactively optimize the management of both comorbid COPD and CVD among socially disadvantaged patient groups that are holistic and person-focused rather than disease-centric.

Our results demonstrate that Black women with COPD are at especially high risk of not receiving guideline concordant statin treatment for CVD prevention. This is consistent with prior literature which has repeatedly demonstrated that Black women face large health inequities in multiple disease states. Intersectionality theory posits that Black women are particularly vulnerable as the disadvantage of having both identities is greater than the sum disadvantage of being Black and a woman. Black women experience more structural barriers to healthcare including racism and sexism compared to Black men or White women. Our findings highlight the need for clinicians to proactively manage comorbidities in Black women with COPD as they are particularly vulnerable to structural inequity.

The decreased likelihood of receiving a statin in Black versus White men lost statistical significance after adjusting for perceived need factors. Perceived need factors such as awareness of hyperlipidemia may play a key role in whether Black men receive statins compared to White men. Awareness of personal cardiovascular risk has been shown to influence health behavior. Alternatively, the relatively lower number of Black men (n=193) in our cohort may have limited our statistical power or generalizability.

Study strengths include the national reach of the REGARDS cohort, oversampling of the Black population, the large number of rigorously collected covariates including in-home pill bottle review of medications, biometric data, and validated self-report variables. Limitations
include that our COPD cohort was defined using a Medicare claims-based algorithm, a method that is susceptible to errors in omission and misclassification.20 Consistent with established approaches in CVD epidemiology, the REGARDS cohort baseline data collection focused on detection of CHD, as defined by having an actual event such as a myocardial infarction or coronary intervention.52,53 Therefore, individuals with medically managed coronary artery disease may not be included in the established CVD group. Additionally, the results of this study reflect relatively older data collected between 2003 – 2007. The cross-sectional, observational design of our study limits drawing causal inferences and capturing how management may have changed over time. Information on important factors such as mistrust of the healthcare system, access to high quality care, and other forms of structural inequity, which impact healthcare utilization, were not available.54 While sex was a main variable for comparison, REGARDS did not collect data regarding gender identity.

In conclusion, women, especially Black women, were significantly less likely to receive indicated statin treatment compared to White men. The persistence of this disparity after controlling for individual factors influencing healthcare utilization suggests a need for health system level interventions to improve receipt of statin therapy in this vulnerable population.
ACKNOWLEDGEMENTS:

This research project is supported by cooperative agreement U01 NS041588 co-funded by the National Institute of Neurological Disorders and Stroke (NINDS) and the National Institute on Aging (NIA), National Institutes of Health, Department of Health and Human Service. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NINDS or the NIA. Representatives of the NINDS were involved in the review of the manuscript but were not directly involved in the collection, management, analysis or interpretation of the data. The authors thank the other investigators, the staff, and the participants of the REGARDS study for their valuable contributions. A full list of participating REGARDS investigators and institutions can be found at: https://www.uab.edu/soph/Regardsstudy/.

Additional funding was provided by National Heart Lung and Blood Institute grant R01HL080477 (Safford). This work is supported by the National Institutes of Health T32-HL134629, and the Weill Cornell Dean’s Diversity and Healthcare Disparities Research Award, and the Donna Redel Research Fund.

Statement of Author Contributions:

JKK, SGM, MN, ADB, MKH, KIA, PG, LCP, SB, FJM, and MMS contributed to the conception and design of the study. MMS contributed to the acquisition of data. JKK, SGM, and MN contributed to data analysis. JKK, SGM, MN, ADB, MKH, KIA, PG, LCP, SB, FJM, and MMS contributed to the interpretation of data. JKK and SGM drafted the initial manuscript. JKK, SGM, MN, ADB, MKH, KIA, PG, LCP, SB, FJM, and MMS contributed to revisions for critically important content. All the authors approved this submitted version of the manuscript.

DECLARATION OF INTEREST:
JKK reports support from the NIH T32 HL134629, and the Weill Cornell Medicine Dean’s Diversity and Healthcare Disparity Research Award directly related to the submitted manuscript. She also reports financial support from the American Thoracic Society Fellowship in Health Equity, the Donna Redel Research Fund, and the Weill Cornell Research Assistance for Primary Parents Award; receipt of medication samples from Novartis, GlaxoSmithKline, and Boehringer Ingelheim to the institution. SGM, MN, ADB, LCP and PG report no conflicts of interest. MKH reports grants/contracts from the NIH, Sanofi, Novartis, Nuvaira, Sunovion, Gala Therapeutics, COPD Foundation, AstraZeneca, GlaxoSmithKline, Boehringer Ingelheim, American Lung Association, Boehringer Ingelheim, and Biodesix; DSMB/Advisory board participation for Novartis and Medtronic; leadership roles with the COPD Foundation, American Lung Association, American Thoracic Society, and GOLD Scientific Committee; stocks in Meissa Vaccines and Altesa Biopharma; royalties/licenses from UpToDate, Norton Publishing, and Penguin Random House; consulting fees from AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Pulmonx, Teva, Verona, Merck, Mylan, Sanofi, DevPro, Aerogen, Polarian, United Therapeutics, Regeneron, Altesa BioPharma; honoraria from Cipla, Chiesi, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Medscape, Integrity, NACE; and personal fees from Medscape and Integrity. FJM reports the following: grants/contracts from AstraZeneca, Chiesi, GlaxoSmithKline, Sanofi/Regeneron; consulting fees from AstraZeneca, Boehringer Ingelheim, Chiesi, CSL Behring, GlaxoSmithKline, Novartis, Polarean, Pulmonx, Sanofi/Regeneron, Sunovion, Teva, Theravance/Viatris, UpToDate; honoraria from AstraZeneca and GlaxoSmithKline; DSMB/advisory board participation in MedTronic and GlaxoSmithKline. KIA reports the following support: funding from the NHLBI K23, Scleroderma Foundation, the American Lung Association, and the Stony-Wold Herbert Fund; and leadership roles as a
member of the Pulmonary Fibrosis Foundation Scientific Review Committee and PCORI merit reviewer. SB reports a position on the data safety monitoring board for the “Optimizing a Closed-Loop Digital Meditation Intervention for Remediating Cognitive Decline and Reducing Stress in Older Adults” study. MMS reports support for the present manuscript with a NHLBI R01HL80477.
REFERENCES

47. Mandelbaum J. Advancing health equity by integrating intersectionality into epidemiological research: applications and challenges. *J Epidemiol Community Health*. 2020;74(9):761-762. doi:10.1136/jech-2020-213847

Table 1. Baseline characteristics of REGARDS COPD participants with statin indication by race-sex groups.

<table>
<thead>
<tr>
<th>Anderson Model Domain</th>
<th>Category</th>
<th>Black Women (n=278)</th>
<th>Black Men (n=193)</th>
<th>White Women (n=398)</th>
<th>White Men (n=566)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predisposing</td>
<td>Age (Mean, SD), y</td>
<td>70.0 (7.9)</td>
<td>71.2 (8.3)</td>
<td>72.0 (7.7)</td>
<td>73.2 (6.9)</td>
</tr>
<tr>
<td></td>
<td>Education < high school, no. (%)</td>
<td>110 (39.6)</td>
<td>74 (38.3)</td>
<td>73 (18.4)</td>
<td>83 (14.7)</td>
</tr>
<tr>
<td></td>
<td>Residence in a health professional shortage area, no. (%)</td>
<td>146 (52.5)</td>
<td>102 (52.9)</td>
<td>143 (35.9)</td>
<td>207 (36.6)</td>
</tr>
<tr>
<td></td>
<td>Residence in state with least public health infrastructure, no. (%)</td>
<td>92 (33.1)</td>
<td>55 (28.5)</td>
<td>164 (41.2)</td>
<td>234 (41.3)</td>
</tr>
<tr>
<td></td>
<td>Zip code with high povertya, no. (%)</td>
<td>107 (38.9)</td>
<td>66 (34.6)</td>
<td>45 (11.5)</td>
<td>65 (11.7)</td>
</tr>
<tr>
<td>Enabling Factors</td>
<td>Social isolation, no. (%)</td>
<td>12 (4.4)</td>
<td>10 (5.4)</td>
<td>21 (5.4)</td>
<td>40 (7.3)</td>
</tr>
<tr>
<td></td>
<td>Poor social networkb, no. (%)</td>
<td>48 (18.8)</td>
<td>29 (15.6)</td>
<td>86 (22.9)</td>
<td>67 (12.5)</td>
</tr>
<tr>
<td>Perceived Need Factors</td>
<td>Aware of high cholesterol, no. (%)</td>
<td>185 (66.8)</td>
<td>117 (60.6)</td>
<td>292 (73.9)</td>
<td>400 (71.2)</td>
</tr>
<tr>
<td></td>
<td>Medication nonadherence (4-item scale score ≥ 1), no. (%)</td>
<td>85 (31.8)</td>
<td>58 (31.8)</td>
<td>117 (30.3)</td>
<td>164 (29.9)</td>
</tr>
<tr>
<td></td>
<td>Current smoker, no. (%)</td>
<td>64 (23.2)</td>
<td>44 (22.8)</td>
<td>107 (26.9)</td>
<td>110 (19.5)</td>
</tr>
<tr>
<td>Observed Need Factors</td>
<td>CHD Risk Category, no. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CHD Risk Equivalent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>200 (73.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>148 (79.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>243 (62.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>398 (72.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRS > 20%</td>
<td>6 (2.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 (8.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 (5.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64 (11.6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRS 10-20%</td>
<td>15 (5.5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 (7.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 (11.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>56 (10.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRS < 10%</td>
<td>51 (18.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 (5.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>81 (20.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 (6.3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depressive symptoms, no. (%) (CES-D score≥ 4)</td>
<td>66 (23.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31 (16.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75 (19.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>53 (9.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL-C ≤ 60mg/dL, no. (%)</td>
<td>178 (67.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>146 (77.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>283 (73.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>498 (89.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI>30, no. (%)</td>
<td>158 (57.4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>61 (32.2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>138 (34.8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>179 (31.9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: FRS = Framingham Risk Score. CES-D = Center for Epidemiologic Studies Depression Scale. HDL-C = high density lipoprotein cholesterol. BMI = Body mass index.

a Zip code with high poverty level defined by >25% residents living below federal poverty line

b Poor social network = self-report of having no one to take care of them should they become ill or disabled
Table 2. Prevalence ratios for treatment of hyperlipidemia by race-sex group.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Unadjusted PR (95% CI)</th>
<th>Model 1<sup>a</sup> PR (95% CI)</th>
<th>Model 2<sup>b</sup> PR (95% CI)</th>
<th>Model 3<sup>c</sup> PR (95% CI)</th>
<th>Model 4<sup>d</sup> PR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race-Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Men</td>
<td>0.89 (0.81, 0.98)</td>
<td>0.88 (0.80, 0.98)</td>
<td>0.87 (0.79, 0.97)</td>
<td>0.86 (0.79, 0.94)</td>
<td>0.84 (0.76, 0.91)</td>
</tr>
<tr>
<td>White Women</td>
<td>0.81 (0.71, 0.94)</td>
<td>0.84 (0.73, 0.97)</td>
<td>0.84 (0.72, 0.97)</td>
<td>0.93 (0.81, 1.07)</td>
<td>0.94 (0.82, 1.07)</td>
</tr>
<tr>
<td>Black Men</td>
<td>0.74 (0.65, 0.85)</td>
<td>0.75 (0.65, 0.86)</td>
<td>0.74 (0.65, 0.85)</td>
<td>0.79 (0.69, 0.89)</td>
<td>0.76 (0.67, 0.86)</td>
</tr>
<tr>
<td>Black Women</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Adjusted for predisposing factors (age, educational attainment, stroke region, residence in a health professional shortage area, residence in a state with least public health infrastructure, residence in zip code with high poverty level)

^b Additionally adjusted for enabling factors (social isolation, poor social network)

^c Additionally adjusted for perceived need factors (awareness of hyperlipidemia, medication adherence, current smoking, physical functioning)

^d Additionally adjusted for observed need factors (CHD risk category, depressive symptoms, HDL-C ≤ 60mg/dL, and BMI>30kg/m²)
Table 3. Prevalence ratios (PR) for treatment of hyperlipidemia by race-sex group among adults age <75 years.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Unadjusted PR (95% CI)</th>
<th>Fully Adjusted(^a) PR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race-Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White Men</td>
<td>(Reference)</td>
<td>(Reference)</td>
</tr>
<tr>
<td>White Women</td>
<td>0.90 (0.79, 1.03)</td>
<td>0.83 (0.74, 0.92)</td>
</tr>
<tr>
<td>Black Men</td>
<td>0.85 (0.71, 1.01)</td>
<td>0.96 (0.81, 1.12)</td>
</tr>
<tr>
<td>Black Women</td>
<td>0.69 (0.67, 0.78)</td>
<td>0.77 (0.66, 0.90)</td>
</tr>
</tbody>
</table>

\(^a\) Adjusted for predisposing factors (age, educational attainment, stroke region, residence in a health professional shortage area, residence in a state with least public health infrastructure, residence in zip code with high poverty level), enabling factors (social isolation, poor social network), perceived need factors (awareness of hyperlipidemia, medication adherence, current smoking, physical functioning) and observed need factors (CHD risk category, depressive symptoms, HDL-C ≤ 60mg/dL, and BMI>30kg/m²)
Figure Legends

Figure 1. Identification of REGARDS COPD participants with statin indication. Out of the 2,148 individuals in the REGARDS COPD cohort, 2,032 had sufficient data to determine whether an indication for statin was present. Among the 2,032 participants, 1,435 were found to have an indication for statin based on ATP III criteria.

Figure 2. Treatment with statin among those who have an indication by race-sex groups. This figure illustrates the percentage of participants who had a statin present on in-home pill bottle review out of the number of participants who had an indication for statin treatment in each race-sex group. White bars represent overall proportions. Black bars represent proportion treated for primary prevention. Grey bars represent percentage treated for secondary prevention.
Figure 1. Identification of REGARDS COPD participants with statin indication.

REGARDS cohort with COPD
N = 2,148

COPD cohort with statin indication data
N = 2,032

Participants with missing data needed to determine statin indication
n = 116

No statin indication
n = 597

COPD cohort with indication
N = 1,435
Figure 2

The bar chart illustrates the percent treated for different groups based on gender and race, with separate sections for overall, primary prevention, and secondary prevention. The data points are as follows:

- **Black Women (n=278)**: A bar for overall, primary prevention, and secondary prevention.
- **Black Men (n=193)**: A bar for overall, primary prevention, and secondary prevention.
- **White Women (n=398)**: A bar for overall, primary prevention, and secondary prevention.
- **White Men (n=566)**: A bar for overall, primary prevention, and secondary prevention.

The y-axis represents the percent treated, ranging from 0 to 100. Each group shows varying levels of percent treated across the different prevention strategies.