Original Research

Tiotropium in Patients With Airflow Limitation According to the Fixed Ratio But Not the Lower Limit of Normal: A Secondary Analysis of the Tiotropium in Early-COPD Study

Kunning Zhou, MD^{1*} Fan Wu, MD, PhD^{1*} Zhishan Deng, MD, PhD¹ Qi Wan, MD Suying Huang, MD^{1,2} Nanshan Zhong, MD, PhD^{1,2} Yumin Zhou, MD, PhD^{1,2} Pixin Ran, MD, PhD^{1,2} on behalf of the ECOPD study investigators.

¹State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China

Address correspondence to:

Pixin Ran, MD, PhD and Yumin Zhou, MD, PhD
State Key Laboratory of Respiratory Disease
National Clinical Research Center for Respiratory Disease
National Center for Respiratory Medicine
Guangzhou Institute of Respiratory Health
The First Affiliated Hospital of Guangzhou Medical University
Guangzhou National Laboratory
Guangzhou, China

Email: pxran@gzhmu.edu.cn Email: zhouyumin410@126.com

Running Head: Tiotropium in COPD With Fixed Ratio Not Lower of Normal

Keywords: COPD; tiotropium; fixed ratio; lower limit of normal; Tie-COPD

Abbreviations:

Funding Support: The Tie-COPD study was supported in part by an investigator-initiated study program by Boehringer Ingelheim and by grants from the National Key Technology Research and Development Program of the 12th and 13th National 5-Year Development Plan (2012BAI05B01 and 2016YFC1304101) and the Guangdong Provincial Science and Technology Research Department (2011B031800132).

This secondary analysis study was supported by the Foundation of Guangzhou National Laboratory (SRPG22-016 and SRPG22-018), the Clinical and Epidemiological Research Project of State Key Laboratory of Respiratory Disease

² Guangzhou National Laboratory, Bio-Island, Guangzhou, China

^{*} Authors contributed equally

(SKLRD-L-202402), and the Plan on Enhancing Scientific Research in Guangzhou Medical University (GMUCR2024-01012).

Date of Acceptance: September 27, 2025 | Published Online: October 3, 2025

Citation: Zhou K, Wu F, Deng Z, et al. Tiotropium in patients with airflow limitation according to the fixed ratio but not the lower limit of normal: a secondary analysis of the Tiotropium in Early-COPD study. *Chronic Obstr Pulm Dis.* 2025; Published online October 3, 2025.

https://doi.org/10.15326/jcopdf.2025.0629

This article has an online supplement.

Abstract

Background: Patients with airflow limitation according to the fixed ratio but not the lower limit of normal (LLN) (FR+LLN-) have a poorer respiratory prognosis and higher mortality than the normal fixed ratio. However, whether tiotropium treatment improves respiratory health outcomes in patients with FR+LLN- remains unclear.

Methods: This was a secondary analysis of the 24-month Tie-COPD study, a multicentre, randomized, double-blind clinical trial comparing tiotropium with placebo for mild-to-moderate COPD. FR+LLN- was defined as a post-bronchodilator FEV_1/FVC ratio of <0.70 but \geq LLN. The primary endpoint was the between-group difference in the change from baseline to 24 months in pre-bronchodilator FEV_1 . Key secondary endpoints included the between-group difference in the annual decline in pre-bronchodilator FEV_1 and exacerbations.

Results: In the Tie-COPD study, 92 patients (12%) had FR+LLN—. Tiotropium resulted in a significantly higher pre-bronchodilator FEV₁ at 24 months (difference, 191 mL; 95% confidence interval [CI] 99, 283), with a least-squares mean (LSM) change from baseline of 47 mL (95% CI –13, 108) versus –140 mL (95% CI –215, –64) with placebo. The annual decline in the pre-bronchodilator FEV₁ was 24 mL/year with tiotropium and 89 mL/year with placebo (difference 60 mL/year; 95% CI 2, 118) from 30 days through 24 months. Tiotropium reduced total exacerbations compared with placebo (relative risk=0.50; 95% CI 0.27, 0.94).

Conclusions: This study demonstrated tiotropium treatment improved lung function, ameliorated lung function decline, and reduced exacerbations compared with placebo

in patients with FR+LLN-, providing evidence-based medicine evidence for the treatment in this population.

Introduction

Chronic obstructive pulmonary disease (COPD) is a heterogeneous pulmonary condition with diverse lung lesions, complex clinical trajectories, and various disease presentations, making it a critical global health challenge. COPD ranks as the third leading cause of mortality worldwide, with its disease burden exacerbated by population aging and persistent environmental risk factors such as tobacco use and air pollution.^{2,3} The clinical complexity of COPD is further compounded by diagnostic uncertainties, particularly regarding its two essential spirometry criteria: the fixed ratio (the post-bronchodilator forced expiratory volume in one second [FEV₁]/forced vital capacity [FVC] ratio of <0.70) and the lower limit of normal (LLN) criterion. Significant diagnostic discordance exists between these two criteria. Specifically, COPD exists in 3%–23% of patients in the general population with airflow limitation according to the fixed ratio (FR) criterion but not the LLN criterion (FR+LLN-) in clinical practices.⁴⁻⁷ Previously dismissed FR+LLN- was previously dismissed and considered as "over-diagnosed COPD"; however, emerging evidence has challenged this viewpoint. The majority of studies have reported that patients with FR+LLN- have more serious chronic respiratory symptoms, more accelerated lung function decline, more frequent exacerbations, and more severe hospitalizations.⁵⁻⁷ Crucially, studies have shown that patients with FR+LLN- exhibited greater ventilatory inefficiency and an increased mortality risk compared with those with a normal fixed ratio.^{8,9} These findings underscore the clinical tendency for patients with FR+LLN- to have a poorer prognosis than those in whom both of the two criteria are normal. There is currently no

PRE-PROOF Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation PRE-PROOF

evidence for the pharmacological treatment of patients with FR+LLN-, and there is no

consensus on the therapeutic value in patients with FR+LLN-, which may restrict the

disease management of this population in clinical practice.

Tiotropium is a potent drug used for the clinical management of COPD. As a long-

acting anticholinergic bronchodilator, tiotropium selectively binds to muscarinic

receptors on the smooth-muscle cells in the airways. Tiotropium treatment has been

shown to inhibit goblet cell metaplasia induced by neutrophil elastase and mucin

production in vitro in a rat model of COPD, indicating that tiotropium may help to treat

mucus overproduction in COPD. In addition, maintenance tiotropium treatment has

demonstrated significant advantages for improving lung function, delaying the rate of

lung function decline, and reducing acute exacerbations, chronic pulmonary symptoms,

and clinically important deterioration in mild-to-moderate COPD in various clinical

studies. 4-7,11-13

Our team previously conducted the Tie-COPD study, which did not use ≥LLN as

an exclusion criterion. Owing to the lack of evidence on the effectiveness of tiotropium

in patients with COPD with FR+LLN-, we conducted this secondary analysis of the

Tie-COPD study using the baseline and follow-up data of patients with COPD with

FR+LLN- treated with tiotropium to explore whether tiotropium improved respiratory

health outcomes in this population.

Methods

Study design

This was a secondary analysis of the Tie-COPD study (NCT01455129), which was a multicentre, randomized, double-blind clinical trial conducted to investigate the efficacy and safety of tiotropium in patients with mild-to-moderate COPD. The trial design and the results of the Tie-COPD study have been published previously. ^{12,14} The Tie-COPD study recruited a large cohort of patients from 24 centres in China who were diagnosed with COPD of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 1−2 (defined as a post-bronchodilator FEV₁/FVC of <0.70 and an FEV₁ ≥50% predicted) plus chronic respiratory symptoms, a history of exposure to COPD-risk factors, or both. The patients with GOLD stage 1-2 COPD were randomly assigned in a 1:1 ratio to receive either tiotropium (18 μg once daily) or placebo for 2 years. Follow-up of these patients was scheduled at 1 month and every 3 months thereafter. Patients with COPD exacerbations during the 4 weeks prior to screening, and those with asthma, large-airway disease, and/or severe systemic disease, were excluded from the Tie-COPD study.

The trial protocol was approved by the local institutional review board or independent ethics committee of each sites. 12, 14 All patients provided written informed consent for participation. The study was conducted in accordance with the principles, of the Declaration of Helsinki.

Spirometry, symptom, and exacerbation assessment

At each follow-up visit, data on smoking status, chronic respiratory symptoms, exacerbations, and medication administration were collected. Lung function data were collected at 1, 6, 12, 18, and 24 months during the follow-up period of this study.

Spirometry assessment was performed by homogeneously trained technicians, following the normative operation methods and standard quality-control principles recommended by the American Thoracic Society and Europe Respiratory Society. 15,16 There was at least a 6-hour interval between the administration of short-acting bronchodilators and spirometry testing. The post-bronchodilator spirometry examination was required to have been performed when 20 minutes after inhaling 400 μg albuterol. According to the published protocol of the Tie-COPD study, the predicted FEV₁ was obtained using the reference values from the European Coal and Steel Community 1993, adjusting for conversion factors for the Chinese population (0.95 for males and 0.93 for females). 17,18 In the present secondary analysis, we recalculated the LLN of FEV1/FVC using the latest Chinese equations. The Global Lung Function Initiative (GLI) race-neutral formula was not used to recalculate the LLN of FEV1/FVC because the GLI race-neutral formula has not been validated in the Chinese population. 19-21 Patients with FR+LLN- were defined as having a post-bronchodilator FEV₁/FVC of <0.70 but ≥LLN. Patients with airflow limitation according to both the fixed ratio criterion and the lower limit of normal criterion (FR+LLN+) were defined as having a post-bronchodilator FEV₁/FVC of <0.70 and <LLN meanwhile. Respiratory symptoms were assessed using the modified British Medical Research Council dyspnoea scale, COPD Assessment Test (CAT) score and Clinical COPD Questionnaire (CCQ).²² COPD exacerbation was defined as new onset or deterioration of at least two of the following five symptoms: cough, sputum production, purulent sputum, wheezing, and dyspnea persisting for at least 48 hours, excluding other causes, such as left and right heart insufficiency, pulmonary embolism, pneumothorax, pleural effusion, and

arrhythmia. 12,23 The severity of acute COPD exacerbations was assessed and recorded

by well-trained staff according to the following categories. Moderate exacerbations

were defined as those resulting in outpatient or emergency department visits and the

need for COPD medication. Severe exacerbations were defined as those resulting in

hospitalization.

Outcomes

The primary outcome was the difference between the tiotropium and the placebo groups

in the change from baseline to 24 months in the pre-bronchodilator FEV₁.

The secondary endpoints were the between-group difference in the change from

baseline to 24 months in post-bronchodilator FEV₁, the between-group difference in

the change in pre-bronchodilator and post-bronchodilator FVC from baseline to 24

months, the between-group difference in the annual decline in FEV1 and FVC before

and after bronchodilator use from 30 days to 24 months, the annual frequency of acute

exacerbations, the CAT score, and the CCQ score.

Statistical methods

This study was a secondary analysis; therefore, no sample size calculation was

performed. We included all eligible patients with FR+LLN- from the full analysis set

of the Tie-COPD study in this secondary analysis. Normally distributed continuous

variables were expressed as the mean \pm standard deviation, and categorical variables

were expressed as n (%). We evaluated the differences between the clinical

characteristics at baseline between the two groups using the two-sample t-test, chi-

square test, or Fisher's exact test, as appropriate. We used repeated-measures analysis of variance to clarify the between-group difference in the change from baseline to 24 months in the pre-bronchodilator FEV₁ and other lung function indicators before and after the bronchodilator use. The random coefficient regression model was used to assess the between-group difference in the annual rate of lung function decline rate from 30 days to 24 months based on the pre-bronchodilator FEV₁ and other spirometry indicators. The measurement values collected at each screening visit were regarded as the dependent variables in the analyses, combined with group, visit (used as a continuous variable), and interactions between groups and visits as fixed effects, and patients as random effects. The Poisson regression model was used to compare the frequency and severity of acute COPD exacerbations, considering the exposure to the trial regimen doses and adjusting for overdispersion (i.e., the presence of greater variability in the data set than the expected heterogeneity in the exacerbation rates). We also used repeated-measures analysis of variance model analyses to clarify the betweengroup difference in the change from baseline to 24 months in the CAT scores and the CCQ scores. All analyses were conducted using SAS version 9.4.

Results

Of the 841 randomized patients, 771 were included in the full analysis set in the Tie-COPD study. Of these, 92 patients (12%) had FR+LLN- (53 in the tiotropium group, 39 in the placebo group). There were no significant differences in the baseline clinical characteristics between the tiotropium group and the placebo group (**Table 1**), including

age (69.4 \pm 6.2 years vs. 69.9 \pm 5.4 years, respectively), sex, post-bronchodilator percentage predicted FEV₁ (87.8% \pm 13.4 % vs. 88.4% \pm 17.8 %), and FEV₁/FVC (68.8% \pm 1.0 % vs. 68.8% \pm 1.0 %).

Primary endpoint

The least-squares mean (LSM) change from baseline to 24 months in the pre-bronchodilator FEV₁ was 47 mL (95% confidence interval [CI] –13, 108) in the tiotropium group and –140 mL (95% CI –215, –64) in the placebo group (**Figure 2**). Tiotropium led to a significantly higher pre-bronchodilator FEV₁ at 24 months compared with placebo (LSM difference 191 mL; 95% CI 99, 283). The improvement was generated from month 6 and was sustained through month 24.

Secondary end points

The results of the between-group difference in the change from baseline to 24 months in post-bronchodilator FEV₁, and pre-bronchodilator and post-bronchodilator FVC are shown in **Figure 2**. Tiotropium led to a significantly greater post-bronchodilator FEV₁ at 24 months (LSM difference 139 mL; 95% CI 38, 223) than placebo. The LSM change from baseline to 24 months in post-bronchodilator FEV₁ was 15 mL (95% confidence interval [CI] –44, 75) in the tiotropium group and –130 mL (95% CI –220, –71) in the placebo group. This improvement was generated from month 6 and was sustained through month 24. Tiotropium also resulted in a significantly higher pre-bronchodilator FVC at 24 months than placebo. The between-group LSM difference from baseline to 24 months was 175 mL (95% CI, 44 to 306). The LSM change from baseline to 24 months was 33 mL (95% CI –55, 122) in the tiotropium group and –126 mL (95% CI

–237, −16) in the placebo group. Tiotropium led to a significantly higher post-bronchodilator FVC at 24 months than placebo. The between-group LSM difference in post-bronchodilator FVC was 100 mL (95% CI −33, 233). The LSM change from baseline to 24 months was −13 mL (95% CI −101, 75) in the tiotropium group and −109 mL (95% CI −219, 1) in the placebo group.

Figure 2 shows that the tiotropium group exhibited lower lung function decline from baseline to 24 months than the placebo group, as shown by the pre-bronchodilator and post-bronchodilator FEV₁ and/or FVC values. The annual decline in pre-bronchodilator FEV₁ in the tiotropium group was lower than in the placebo group (24 mL/year versus 89 mL/year, respectively; difference 60 mL/year; 95% CI 2, 118) from 30 days through 24 months. Similar results were observed for the post-bronchodilator FEV₁. The between-group difference from 30 days through 24 months in the annual decline in post-bronchodilator FEV₁ was 67 mL/year (95% CI 13, 122), with an annual decline of 23 mL/year in the tiotropium group compared with 90 mL/year in the placebo group. Tiotropium reduced the annual decline in pre-bronchodilator FVC compared with placebo (34 mL/year vs. 102 mL/year, respectively; difference 52 mL/year; 95% CI –35, 139). Similarly, tiotropium reduced the annual decline in post-bronchodilator FVC compared with placebo (39 mL/year vs. 111 mL/year; difference 60 mL/year; 95% CI –25, 146) from 30 days through 24 months.

The annual frequency of acute COPD exacerbations was lower in the tiotropium group than in the placebo group (0.22 ± 0.05 per patient-year vs. 0.43 ± 0.09 per patient-year, respectively; relative risk [RR]=0.50; 95% CI, 0.27-0.94). Similar results were

observed for moderate-to-severe COPD exacerbations (0.19 \pm 0.05 per patient-year vs. 0.38 \pm 0.09 per patient-year; RR=0.49; 95% CI, 0.28–0.94) and severe COPD exacerbations requiring hospitalization (0.03 \pm 0.01 per patient-year vs. 0.10 \pm 0.03 per patient-year; RR=0.31; 95% CI, 0.11–0.85) (**Figure 3**).

As for chronic respiratory symptoms, the tiotropium group demonstrated significantly reduced CAT scores from baseline to 24 months (LSM change –1.55; 95% CI –2.26, –0.83) compared with the placebo group (LSM change –0.09; 95% CI –0.82, 0.64). The between-group difference was –1.92 (95% CI –2.85, –1.00) (**Figure 4**). The LSM change in the CCQ score from baseline to 24 months in the tiotropium group was –0.22 (95% CI –0.34, –0.10) compared with 0.02 (95% CI –0.07, 0.11) in the placebo group. The between-group difference was –0.18 (95% CI –0.28, –0.09).

In patients with FR+LLN+, the LSM change from baseline to 24 months in prebronchodilator FEV₁ was 30 mL (95% confidence interval [CI] -1, 60) in the tiotropium group and -129 mL (95% CI -159, -99) in the placebo group (Supplementary Figure 1). Tiotropium led to a significantly greater prebronchodilator FEV₁ at 24 months (LSM difference 141 mL; 95% CI 98, 184) than placebo. Similar findings were observed in the post-bronchodilator FEV₁, prebronchodilator FVC, and post-bronchodilator FVC. From 30 days through 24 months, the annual decline in the post-bronchodilator FEV₁ was 28 mL per year in the tiotropium group and 44 mL per year in the placebo group, with a between-group difference of 17 mL/year (95% CI 1, 34). The groups did not differ significantly in the annual decline of the pre-bronchodilator FEV₁, pre-bronchodilator FVC, and postbronchodilator FVC. Tiotropium also resulted in a lower frequency of total exacerbations (0.50 ± 0.60 per patient-year vs. 0.88 ± 0.09 per patient-year, respectively; RR=0.56; 95% CI, 0.46-0.67) compared to placebo (**Supplementary Figure 2**). In terms of chronic respiratory symptoms, the tiotropium group showed visibly reduced CAT scores from baseline to 24 months (LSM change -1.70; 95% CI -2.36, -1.05) compared with the placebo group (LSM change -0.24; 95% CI -0.90, 0.41). The between-group difference was -1.21 (95% CI -2.85, -1.00) (**Supplementary Figure 3**). The above results remain stable in CCQ scores.

Discussion

The secondary analysis revealed that tiotropium improved lung function, and reduced lung function decline, exacerbations, and chronic respiratory symptoms compared with placebo in patients diagnosed with airflow limitation according to the commonly used fixed ratio of 0.70 but not the LLN.

To our knowledge, this is the first study to investigate the effectiveness of pharmacological treatment for patients with FR+LLN-. Patients with FR+LLN- are prone to a better health status than those with FR+LLN+ and exhibit better lung function, fewer respiratory symptoms, and better respiratory outcomes, and thus this group of patients is often considered to be over-diagnosed COPD. However, patients with FR+LLN- are associated with increased respiratory symptoms, poorer lung function, a higher risk of exacerbations, and a higher risk of mortality than patients in whom both criteria are normal.⁵⁻⁹ The present study provided evidence-based medicine

evidence supporting the pharmacological treatment of this special population.

Three novel findings of this study may contribute to guiding the treatment of patients with FR+LLN- in clinical practice. First, we demonstrated that tiotropium visibly improved FEV₁ at month 24 by approximately 139 mL to 191 mL than placebo in patients with FR+LLN-. The 24-month duration of the Tie-COPD study captured longitudinal lung function trajectories more reliably. Second, tiotropium effectively reduced the annual rate of lung function decline in patients with FR+LLN- compared to placebo during the 24 months. Tiotropium alleviated the annual decline in postbronchodilator FEV₁ (23 mL/year vs. 90 mL/year in the placebo group) over 24 months. The 23 mL/year annual decline in prebronchodilator FEV₁, an effect size comparable to that observed with tiotropium in patients with GOLD 2-3 COPD (34 mL/year in the UPLIFT study), suggests its biological plausibility despite diagnostic reclassification.²⁴ Third, tiotropium reduced exacerbations and alleviated chronic pulmonary symptoms in patients with FR+LLN- compared with placebo. Overall, the effectiveness of tiotropium for improving respiratory health outcomes among patients with FR+LLN- was multi-dimensional.

The proportion of patients with FR+LLN- in the Tie-COPD study was 12%, which is consistent with previous studies, and whether these special populations require treatment is an interesting question.⁴⁻⁷ In this study, the rate of annual decline in prebronchodilator FEV₁ was 89 mL in the placebo group, which is much higher than the natural age-related decline of approximately 30 mL/year in healthy aging individuals.^{25,26} The annual decline in prebronchodilator FEV₁ was 89 mL in the

placebo group in this analysis, which is higher than the value of 53 mL in the placebo group of the entire Tie-COPD study. A similar trend was observed for postbronchodilator FEV₁.¹² These findings indicate that patients with FR+LLN– have faster lung function decline than the overall population with mild-to-moderate COPD. Moreover, the disease burden of patients with FR+LLN– is heavier than that of those with a normal fixed ratio.⁴⁻⁷ The above information has challenged the conventional viewpoint that these milder cases may not require pharmacological intervention, indicating that patients with FR+LLN– may require integrated management, early intervention, and long-term follow-up to improve their respiratory outcomes.

Tiotropium is a long-acting anticholinergic bronchodilator that selectively binds to muscarinic receptors on smooth-muscle cells in the airway. Previous studies have shown that tiotropium ameliorates airway limitation, reduces air trapping and exertional dyspnea, and improves exercise tolerance and health-related quality of life among patients with COPD.²⁷ The results of the present study reveal that tiotropium effectively improved lung function, delayed lung function decline, and reduced the risk of acute exacerbation among patients with FR+LLN-, supporting the pharmacological intervention and management of these patients in clinical practice. Large population-based cohort studies and clinical trials are still needed to verify the efficacy of pharmacological treatment in patients with FR+LLN- and to explore appropriate therapeutic medication.

The impact of the two criteria of interest (fixed ratio and LLN) on the diagnosis of COPD has always been a key issue in respiratory medicine. The use of the fixed ratio

for the diagnosis of COPD was first recommended in the GOLD 2001 guidelines, originating from large-sample prevalence results. 28 The fixed ratio has been used ever since, owing to its simplicity and suitability for use in clinical practice and its standardization. However, one of the problems that arose with the use of the fixed ratio was the underdiagnosis of younger patients and the overdiagnosis of older patients.²⁹ The LLN criterion is based on the 5th percentile of the normal distribution of the healthy population and is adjusted for age, sex, height, and race, which had greater potential for accurately reflecting patients' lung function. 11,30 However, the latest strategy proposed the implementation of a more inclusive diagnosis of COPD, allowing for the detection of early disease before irreversible pathological changes have occurred, enabling early disease interception.³¹ The incidence of COPD detected by the LLN criterion is lower than that detected by the fixed ratio criterion (6.1% vs. 7.6%) among patients aged 40– 49 years, which may not conform to the latest prevention and treatment strategy for COPD. 32,33 Moreover, previous studies have evidenced that the fixed ratio criterion is no less effective for detecting COPD-relevant hospitalization and mortality than the LLN criterion or other fixed thresholds used to define airflow limitation.³⁴ Last, patients with FR+LLN- are visibly older, have fewer symptoms, have a higher risk of cardiovascular disorders and/or mortality than those with FR-LLN-, indicating that satisfying the LLN criterion may not suggest that the respiratory system is healthy, even though they have a lower risk of exacerbations than FR-LLN-.4, 35-37 Our findings support the use of the fixed ratio criterion to identify patients who are at a high risk of clinically significant COPD. Therefore, this criterion may be suitable for use in routine

PRE-PROOF Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation PRE-PROOF

clinical practice and COPD treatment, especially in low- and/or middle-income

countries that have not conducted large-scale studies to calculate their own LLN

formulas.

This study has some potential limitations. This was a post hoc analysis and no

preplanned sample size calculation was performed. This may have led to false-positive

results and insufficient power to classify the differences between the tiotropium and

placebo groups. Moreover, a potential imbalance in the clinical characteristics between

the two groups may have influenced the study results. Furthermore, the sample size was

small, and thus we could not conduct clinically relevant subgroup analyses.

Conclusion

The results of this secondary analysis of the Tie-COPD study demonstrated that

tiotropium improved lung function, ameliorated lung function decline, reduced acute

exacerbations, and reduced chronic pulmonary symptoms compared with placebo in

patients with FR+LLN-, providing evidence for the pharmacological treatment of this

population.

Authors' contributions

(I) Conception and design: K Zhou, F Wu, P Ran, Y Zhou; (II) Administrative support: P Ran, N Zhong, Y Zhou; (III) Provision of study materials or patients: P Ran, Y Zhou; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: F Wu, K Zhou, Z Deng, Q Wan, N Zhong, P Ran, Y Zhou; (VI) Manuscript writing: K Zhou, F Wu, Z Deng, Q Wan, N Zhong, P Ran, Y Zhou; (VII) Final approval of manuscript: All authors.

Data sharing statement

Our data concerning the Tie-COPD study is shareable.

Acknowledgements

We thank Ming Tong, Ben Zhang, and Naiqing Zhao (clinical research managers of Rundo International Pharmaceutical Research and Development) for contributions in monitoring and statistical support. Tie-COPD study Investigators: National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University: Yumin Zhou, Xiaochen Li, Shuyun Chen, Jinping Zheng, Dongxing Zhao, Weijie Guan, Nanshan Zhong, Pixin Ran; The Affiliated Hospital of Guangdong Medical University: Weimin Yao, Biao Liang; Guangzhou Panyu Center Hospital: Rongchang Zhi, Yinhuan Li; The Third Affiliated Hospital of Guangzhou Medical University: Liping Wei, Guoping Hu; Chenzhou No 1 People's Hospital: Bingwen He, Hui Tan; Guizhou Provincial People's Hospital: Xiangyan Zhang, Xianwei Ye; Wengyuan County People's Hospital: Changli Yang, Lizhen Zeng, Changxiu Ye; Henan Provincial People's Hospital: Ying Li, Xitao Ma; Liwan Hospital Guangzhou Medical

Juan Du, Xiwei Hu; The Second People's Hospital of Hunan Province: Jianping Gui, Jia Tian; Huizhou First Hospital: Bin Hu, Zhe Shi; The Affiliated Zhongshan Hospital of Fudan University: Chunxue Bai, Xiaodan Zhu; Shenzhen Sixth People's Hospital: Ping Huang, Xiufang Du; The First People's Hospital of Foshan: Gang Chen, Minjing Li; Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology: Yongjian Xu, Jianping Zhao; Xinqiao Hospital: Changzheng Wang, Qianli Ma; The First Affiliated Hospital of Jinan University: Shengming Liu; Shanghai Xuhui Central Hospital: Ronghuan Yu; The First Affiliated Hospital Sun Yat-sen University: Canmao Xie; The Second People's Hospital of Zhanjiang: Xiongbin Li; Shaoguan Iron and Steel Group Company Limited Hospital: Tao Chen; Beijing Chao-Yang Hospital: Yingxiang Lin; Lianping County People's Hospital: Weishu Ye, Xiangwen Luo, Lingshan Zeng, Shuqing Yu. We thank Emily Woodhouse, PhD, from Liwen Bianji (Edanz) (www.liwenbianji.cn) for helping us polish the English text of a draft of this manuscript.

References

- [1]. Global Initiative for Chronic Obstructive Lung Disease. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: 2025 report. [2024-11-13]. https://goldcopd.org/2025-gold-report/.
- [2]. GBD 2021 Diseases and Injuries Collaborators. Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. *Lancet*. 2024;403(10440):2133-2161.
- [3]. World Health Organization. Projections of mortality and causes of death, 2016 and 2060. Available from: https://colinmathers.com/2022/05/10/ projections-of-global-deaths-from-2016-to-2060/. Accessed October, 2023.4
- [4]. Liu S, et al. Clinical impact of the lower limit of normal of FEV1/FVC on detecting chronic obstructive pulmonary disease: A follow-up study based on cross-sectional data. *Respir Med.* 2018;139:27-33.
- [5]. Çolak Y, et al. Young and middle-aged adults with airflow limitation according to lower limit of normal but not fixed ratio have high morbidity and poor survival: a population-based prospective cohort study. *Eur Respir J.* 2018;51:1702681.
- [6]. Çolak Y, et al. Impact of diagnostic criteria on the prevalence of COPD. *Clin Respir J.* 2013;7:297-303.
- [7]. Zaigham S, et al. Lung function, forced expiratory volume in 1 s decline and

- COPD hospitalisations over 44 years of follow-up. *Eur Respir J.* 2016;47:742-750.
- [8]. Neder JA, Milne KM, Berton DC, et al. Exercise Tolerance according to the Definition of Airflow Obstruction in Smokers. *Am J Respir Crit Care Med*. 2020;202:760-762.
- [9]. Mannino DM, Sonia Buist A, Vollmer WM. Chronic obstructive pulmonary disease in the older adult: what defines abnormal lung function? *Thorax*. 2007;62:237-241.
- [10]. Arai N, et al. Inhibition of neutrophil elastase-induced goblet cell metaplasia by tiotropium in mice. *Eur Respir J.* 2010;35(5):1164-1171.
- [11]. Belmonte KE. Cholinergic pathways in the lungs and anticholinergic therapy for chronic obstructive pulmonary disease. *Proc Am Thorac Soc.* 2005;2(4):297-312.
- [12]. Zhou Y, Zhong NS, Ran P, et, al. Tiotropium in Early-Stage Chronic Obstructive Pulmonary Disease. *N Engl J Med*. 2017;377:923-935.
- [13]. Wu F, et al. Tiotropium reduces clinically important deterioration in patients with mild-to-moderate chronic obstructive pulmonary disease: A post hoc analysis of the Tie-COPD study. *Respir Med.* 2024;222:107527.
- [14]. Li X, et al. Early intervention with tiotropium in Chinese patients with GOLD stages I-II chronic obstructive pulmonary disease (Tie-COPD): study protocol for a multicentre, double-blinded, randomised, controlled trial. *BMJ Open*. 2014;4(2):e003991.

- [15]. Miller MR, et al. General considerations for lung function testing. Eur Respir J. 2005;26(1):153-161.
- [16]. Miller MR, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-338.
- [17]. Quanjer PH, et al. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993;16:5-40.
- [18]. Zheng J, Zhong N. Normative values of pulmonary function testing in Chinese adults. *Chin Med J (Engl)*. 2002;115(1):50-54.
- [19]. Bowerman C, et al. A Race-neutral Approach to the Interpretation of Lung Function Measurements. *Am J Respir Crit Care Med*. 2023;207(6):768-774.
- [20]. Diao JA, et al. Implications of Race Adjustment in Lung-Function Equations. *N* Engl J Med. 2024;390(22):2083-2097.
- [21]. Elmaleh-Sachs A, et al. Race/Ethnicity, Spirometry Reference Equations, and Prediction of Incident Clinical Events: The Multi-Ethnic Study of Atherosclerosis (MESA) Lung Study. *Am J Respir Crit Care Med.* 2022;205(6):700-710.
- [22]. Jones PW, et al. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648-654.
- [23]. Anthonisen NR, et al. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 1987;106(2):196-204.

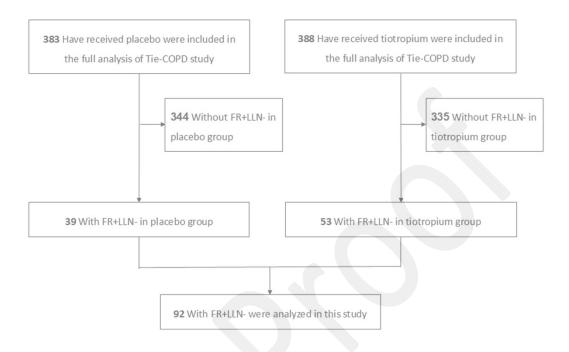
- [24]. Morice AH, et al. COPD in young patients: a pre-specified analysis of the four-year trial of tiotropium (UPLIFT). *Respir Med*. 2010;104(11):1659-1667.
- [25]. Lange P, et al. Lung-Function Trajectories Leading to Chronic Obstructive Pulmonary Disease. *N Engl J Med*. 2015;373(2):111-122.
- [26]. Bhatt SP, et al. Association between Functional Small Airway Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease. *Am J Respir Crit Care Med*. 2016;194(2):178-184.
- [27]. Keating GM. Tiotropium bromide inhalation powder: a review of its use in the management of chronic obstructive pulmonary disease. *Drugs*. 2012;72:273-300.
- [28]. Pauwels RA, et al; GOLD Scientific Committee. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med. 2001;163(5):1256-1276.
- [29]. Aggarwal AN, et al. Comparison of the lower confidence limit to the fixed-percentage method for assessing airway obstruction in routine clinical practice.

 *Respir Care. 2011;56(11):1778-1784.
- [30]. Quanjer PH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. *Eur Respir J.* 2012;40(6):1324-1343.
- [31]. Stolz D, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. *Lancet*. 2022;400(10356):921-972.

- [32]. Jordan RE, et al. Sex, susceptibility to smoking and chronic obstructive pulmonary disease: the effect of different diagnostic criteria. Analysis of the Health Survey for England. *Thorax*. 2012;67(7):600-605.
- [33]. Bhatt SP, et al. Discriminative Accuracy of FEV1:FVC Thresholds for COPD-Related Hospitalization and Mortality. *JAMA*. 2019;321(24):2438-2447.
- [34]. Mannino DM, et al. Interpreting lung function data using 80% predicted and fixed thresholds identifies patients at increased risk of mortality. *Chest*. 2012;141(1):73-80.
- [35]. Izquierdo Alonso JL, et al. The use of the lower limit of normal as a criterion for COPD excludes patients with increased morbidity and high consumption of health-care resources. *Arch Bronconeumol*. 2012;48(7):223-228.
- [36]. Mannino DM, Diaz-Guzman E. Interpreting lung function data using 80% predicted and fixed thresholds identifies patients at increased risk of mortality. *Chest.* 2012;141(1):73-80.
- [37]. Calverley PMA, et al. The Effect of Defining Chronic Obstructive Pulmonary Disease by the Lower Limit of Normal of FEV₁/FVC Ratio in Tiotropium Safety and Performance in Respimat Participants. Ann Am Thorac Soc. 2018;15(2):200-208.

Table 1. Baseline characteristics of the patients with classified as normal using the lower limit of normal criterion but obstructed using fixed ratio criterion.

Variable	Placebo Group	Tiotropium Group	P Value
	(N=39)	(N=53)	
Age — year	69.9±5.4	69.4±6.2	0.718
Male sex — no. (%)	38 (97.4)	48 (90.6)	0.237
Body-mass index — Kg/m²	22.4±3.5	22.3±3.1	0.951
Smoking status — no. (%)			0.311
Never smoked	6 (15.4)	15 (28.3)	
Current smoking	13 (33.3)	17 (32.1)	
Former smoking	20 (51.3)	21 (39.6)	
Smoking index — pack-year	48.1±94.7	39.7±60.3	0.604
Spirometric values at baseline			
Pre-bronchodilator FEV₁ — liters	2.05±0.50	1.95±0.46	0.324
Pre-bronchodilator FEV $_1$ of predicted value — $\%$	83.4±17.1	82.2±13.8	0.712
Pre-bronchodilator FVC — liters	3.08±0.72	2.94±0.65	0.310
Pre-bronchodilator FEV ₁ /FVC — %	66.4±2.99	66.3±2.98	0.977
Post-bronchodilator FEV ₁ — liters	2.16±0.50	2.07±0.46	0.341
Post-bronchodilator FEV_1 of predicted value — $\%$	88.4±17.8	87.8±13.4	0.841
Post-bronchodilator FVC — liters	3.15±0.73	3.01±0.65	0.343
Post-bronchodilator FEV₁/FVC — %	68.8±0.99	68.8±1.03	0.799
GOLD stage — no. (%)			0.304
1 (mild)	24 (61.5)	38 (71.7)	
2 (moderate)	15 (38.5)	15 (28.3)	
mMRC score	0.6±0.5	0.7±0.7	0.604
CAT score	4.6±3.5	6.3±5.6	0.591


Data are presented as mean \pm standard deviation or n (%).

Abbreviations: COPD = chronic obstructive pulmonary disease; FEV₁ = forced expiratory volume in 1 second; FVC = forced vital capacity; GOLD = Global Initiative for Chronic Obstructive Lung Disease; CAT = COPD Assessment Test; mMRC = the modified Medical Research Council.

Copyright <u>Chronic Obstructive Pulmonary Diseases: Journal of the COPD Foundation</u> ©2025 Published online October 3, 2025 https://doi.org/10.15326/jcopdf.2025.0629

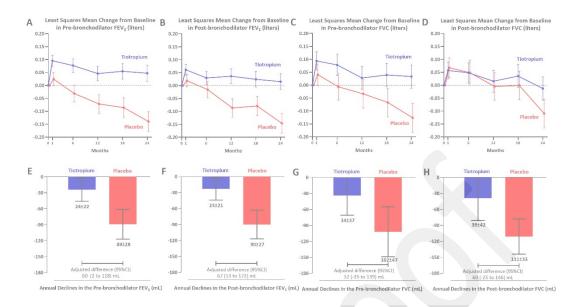
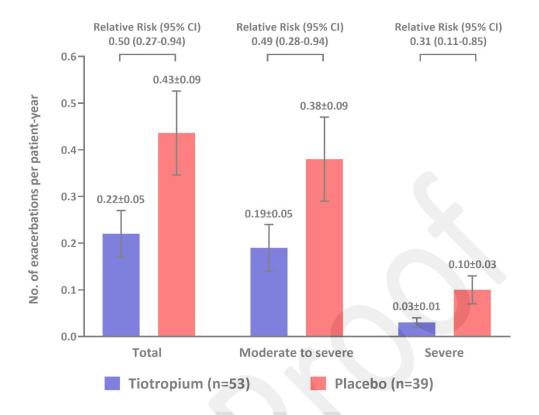

Figure legends

Figure 1. Study flow chart

Abbreviations: COPD = chronic obstructive pulmonary disease; FR+LLN-, patients with classified as normal using lower limit of normal criterion but obstructed using fixed ratio criterion.

Figure 2. Mean and annual declines in FEV_1 and FVC before and after the bronchodilator used in the patients in this study.



Data are mean \pm standard error

A, B, C, and D have shown the least squares mean change from baseline in the FEV₁ and FVC before and after the bronchodilator used in the patients with classified as normal using lower limit of normal criterion but obstructed using fixed ratio criterion between the placebo group and the tiotropium group. E, F, G, and H were adjusted for confounding factors including age, sex, body mass index, smoking status, baseline classification of Global Initiative for Chronic Obstructive Lung Disease, and baseline spirometric values, and have shown annual declines in the FEV₁ and FVC before and after the bronchodilator used in the patients with classified as normal using lower limit of normal criterion but obstructed using fixed ratio criterion between the placebo group and the tiotropium group.

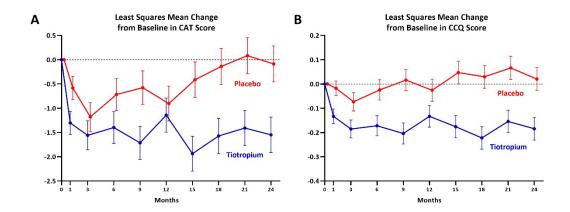
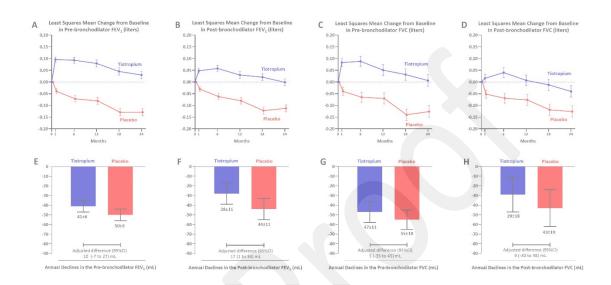

Abbreviations: FEV₁, forced expiratory volume in one second; FVC = forced vital capacity.

Figure 3. Difference in acute exacerbations over time in this study.

Data are mean \pm standard error.

Figure 4. The difference in CAT Scores and CCQ scores at different time points over time in this study.

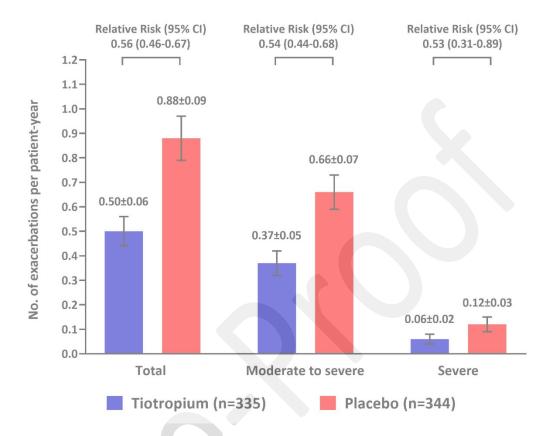

Data are mean \pm standard error.

(A) CAT over time; (B) CCQ over time.

Abbreviations: CAT, COPD assessment test; CCQ, clinical COPD questionnaire.

Online Supplement

Supplementary Figure 1. Mean and annual declines in FEV₁ and FVC before and after the bronchodilator used in the patients in patients with airflow limitation according to both the fixed ratio criterion and the lower limit of normal criterion.



Data are mean ± standard error

A, B, C, and D have shown the least squares mean change from baseline in the FEV₁ and FVC before and after the bronchodilator used in the patients with classified as normal using lower limit of normal criterion but obstructed using fixed ratio criterion between the placebo group and the tiotropium group. E, F, G, and H were adjusted for confounding factors including age, sex, body mass index, smoking status, baseline classification of Global Initiative for Chronic Obstructive Lung Disease, and baseline spirometric values, and have shown annual declines in the FEV₁ and FVC before and after the bronchodilator used in the patients with classified as normal using lower limit of normal criterion but obstructed using fixed ratio criterion between the placebo group and the tiotropium group.


Abbreviations: FEV₁, forced expiratory volume in one second; **FVC** = forced vital capacity.

Supplementary Figure 2. Difference in acute exacerbations over time in patients with airflow limitation according to both the fixed ratio criterion and the lower limit of normal criterion.

Data are mean ± standard error.

Supplementary Figure 3. The difference in CAT Scores and CCQ scores at different time points over time in patients with airflow limitation according to both the fixed ratio criterion and the lower limit of normal criterion.

Data are mean ± standard error.

(A) CAT over time; (B) CCQ over time.

Abbreviations: CAT, COPD assessment test; **CCQ**, clinical COPD questionnaire.