1. Regan EA, Hokanson JE, Murphy JR, et al. Genetic epidemiology of COPD (COPDGene®) study design. COPD. 2010;7(1):32-43. http://dx.doi.org/10.3109/15412550903499522.
2. Vestbo J, Anderson W, Coxson HO, et al. Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE). Eur Respr J. 2008;31(4):869-873. doi: http://dx.doi.org/10.1183/09031936.00111707.
3. Couper D, Lavange LM, Han M, et al. Design of the Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS). Thorax. 2014; 69:492-495. doi: http://dx.doi.org/10.1136/thoraxjnl-2013-203897.
4. Gietema HA, Schilham AM, van Ginneken B, van Klaveren RJ, Lammers JW, Prokop M. Monitoring of smoking-induced emphysema with CT in a lung cancer screening setting: detection of real increase in extent of emphysema. Radiology. 2007;244(3):890-897. doi: http://dx.doi.org/10.1148/radiol.2443061330.
5. Han MK, Kazerooni EA, Lynch DA, et al. Chronic obstructive pulmonary disease exacerbations in the COPDGene study: associated radiologic phenotypes. Radiology. 2011;261(1):274-282.doi: http://dx.doi.org/10.1148/radiol.11110173.
6. Coxson HO, Dirksen A, Edwards LD, et al. The presence and progression of emphysema in COPD as determined by CT scanning and biomarker expression: a prospective analysis from the ECLIPSE study. Lancet Respir Med. 2013;1(2):129-136. doi: http://dx.doi.org/10.1016/S2213-2600(13)70006-7.
7. Newell JD, Jr., Sieren J, Hoffman EA. Development of quantitative computed tomography lung protocols. J Thorac Imaging. 2013;28(5):266-271. doi: http://dx.doi.org/10.1097/RTI.0b013e31829f6796.
8. Mayo JR. CT evaluation of diffuse infiltrative lung disease: dose considerations and optimal technique. J Thoracic Imaging. 2009;24(4):252-259. doi: http://dx.doi.org/10.1097/RTI.0b013e3181c227b2.
9. Choo JY, Goo JM, Lee CH, Park CM, Park SJ, Shim MS. Quantitative analysis of emphysema and airway measurements according to iterative reconstruction algorithms: comparison of filtered back projection, adaptive statistical iterative reconstruction and model-based iterative reconstruction. Eur Radiol. 2013.24(4):799-806. doi: http://dx.doi.org/10.1007/s00330-013-3078-5.
10. Ichikawa Y, Kitagawa K, Nagasawa N, Murashima S, Sakuma H. CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction. BMC Med Imaging. 2013;13:27. doi: http://dx.doi.org/10.1186/1471-2342-13-27
11. Mets OM, Willemink MJ, de Kort FP, et al. The effect of iterative reconstruction on computed tomography assessment of emphysema, air trapping and airway dimensions. Eur Radiol. 2012;22(10):2103-2109.doi: http://dx.doi.org/10.1007/s00330-012-2489-z.
12. Nishio M, Matsumoto S, Ohno Y, et al. Emphysema quantification by low-dose CT: potential impact of adaptive iterative dose reduction using 3D processing. AJR Am J Roentgenol. 2012;199(3):595-601.doi: http://dx.doi.org/10.2214/AJR.11.8174.
13. Schroeder J, McKenzie A, Zach J, et al. Relationships between airflow obstruction and quantitative CT measurements of emphysema, air trapping and airways in subjects with and without COPD. AJR Am J Roentgenol. 2013;201(3):W460-70. doi: http://dx.doi.org/10.2214/AJR.12.10102.
14. Mets OM, Buckens CF, Zanen P, et al. Identification of chronic obstructive pulmonary disease in lung cancer screening computed tomographic scans. JAMA. 2011;306(16):1775-1781.doi: http://dx.doi.org/10.1001/jama.2011.1531
15. Kim SS, Seo JB, Lee HY, et al. Chronic obstructive pulmonary disease: lobe-based visual assessment of volumetric CT by using standard images--comparison with quantitative CT and pulmonary function test in the COPDGene study. Radiology. 2013;266(2):626-635. doi: http://dx.doi.org/10.1148/radiol.12120385.
16. Cavigli E, Camiciottoli G, Diciotti S, et al. Whole-lung densitometry versus visual assessment of emphysema. Eur Radiol. 2009;19(7):1686-1692. doi: http://dx.doi.org/10.1007/s00330-009-1320-y.
17. Bafadhel M, Umar I, Gupta S, et al. The role of CT scanning in multidimensional phenotyping of COPD. Chest. 2011;140(3):634-642. doi: http://dx.doi.org/10.1378/chest.10-3007.
18. O'Brien C, Guest PJ, Hill SL, Stockley RA. Physiological and radiological characterisation of patients diagnosed with chronic obstructive pulmonary disease in primary care. Thorax. 2000;55(8):635-642.doi: http://dx.doi.org/10.1136/thorax.55.8.635.
19. Martinez-Garcia MA, Soler-Cataluna JJ, Donat Sanz Y, et al. Factors associated with bronchiectasis in patients with COPD. Chest. 2011;140(5):1130-1137. doi: http://dx.doi.org/10.1378/chest.10-1758.
20. Washko GR, Lynch DA, Matsuoka S, et al. Identification of early interstitial lung disease in smokers from the COPDGene Study. Acad Radiol. 2010;17(1):48-53. doi: http://dx.doi.org/10.1016/j.acra.2009.07.016.
21. Jin GY, Lynch D, Chawla A, Garg K, Tammemagi MC, Sahin H, et al. Interstitial Lung Abnormalities in a CT Lung Cancer Screening Population: Prevalence and Progression Rate. Radiology. 2013;268(2):563-571. doi:.http://dx.doi.org/10.1148/radiol.13120816.
22. Wells JM, Washko GR, Han MK, et al. Pulmonary arterial enlargement and acute exacerbations of COPD. New Engl J Med. 2012;367(10):913-921. http://dx.doi.org/10.1056/NEJMoa1203830
23. Lynch DA, Al-Qaisi MA. Quantitative computed tomography in chronic obstructive pulmonary disease. J Thorac Imaging. 2013;28(5):284-290. doi: http://dx.doi.org/10.1097/RTI.0b013e318298733c.
24. Müller NL, Staples CA, Miller RR, Abboud RT. Density mask. An objective method to quantitate emphysema using computed tomography. Chest. 1988;94(4):782-787. doi: http://dx.doi.org/10.1378/chest.94.4.782.
25. Bankier AA, De Maertelaer V, Keyzer C, Gevenois PA. Pulmonary emphysema: subjective visual grading versus objective quantification with macroscopic morphometry and thin-section CT densitometry. Radiology. 1999;211(3):851-858. doi: http://dx.doi.org/10.1148/radiology.211.3.r99jn05851.
26. Madani A, Zanen J, de Maertelaer V, Gevenois PA. Pulmonary emphysema: objective quantification at multi-detector row CT--comparison with macroscopic and microscopic morphometry. Radiology. 2006;238(3):1036-1043.doi: http://dx.doi.org/10.1148/radiol.2382042196
27. Heussel CP, Herth FJF, Kappes J, et al. Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values. Eur Radiol. 2009;19(10):2391-2402.doi: http://dx.doi.org/10.1007/s00330-009-1437-z.
28. Dirksen A. Monitoring the progress of emphysema by repeat computed tomography scans with focus on noise reduction. Proc Am Thorac Soc. 2008;5(9):925-928. doi: http://dx.doi.org/10.1513/pats.200804-033QC.
29. Dirksen A, Friis M, Olesen KP, Skovgaard LT, Sorensen K. Progress of emphysema in severe alpha 1-antitrypsin deficiency as assessed by annual CT. Acta Radiol. 1997;38(5):826-832.doi: http://dx.doi.org/10.1080/02841859709172418.
30. Stolk J, Dirksen A, van der Lugt AA, et al. Repeatability of lung density measurements with low-dose computed tomography in subjects with alpha-1-antitrypsin deficiency-associated emphysema. Invest Radiol. 2001;36(11):648-651.doi: http://dx.doi.org/10.1097/00004424-200111000-00004.
31. Heussel CP, Herth FJ, Kappes J, et al. Fully automatic quantitative assessment of emphysema in computed tomography: comparison with pulmonary function testing and normal values. Eur Radiol. 2009;19(10):2391-2402.doi: http://dx.doi.org/10.1007/s00330-009-1437-z.
32. Mishima M, Hirai T, Itoh H, et al. Complexity of terminal airspace geometry assessed by lung computed tomography in normal subjects and patients with chronic obstructive pulmonary disease.Proc Natl Acad Sci U S A. 1999;96(16):8829-8834. doi: http://dx.doi.org/10.1073/pnas.96.16.8829.
33. Madani A, Van Muylem A, de Maertelaer V, Zanen J, Gevenois PA. Pulmonary emphysema: size distribution of emphysematous spaces on multidetector CT images--comparison with macroscopic and microscopic morphometry. Radiology. 2008;248(3):1036-1041. doi: http://dx.doi.org/10.1148/radiol.2483071434
34. Madani A, Van Muylem A, Gevenois PA. Pulmonary emphysema: Effect of lung volume on objective quantification at thin-section CT. Radiology. 2010;257(1):260-268. doi: http://dx.doi.org/10.1148/radiol.10091446.
35. Fuld MK, Grout RW, Guo J, Morgan JH, Hoffman EA. Systems for lung volume standardization during static and dynamic MDCT-based quantitative assessment of pulmonary structure and function. Acad Radiol. 2012;19(8):930-940. doi: http://dx.doi.org/10.1016/j.acra.2012.03.017.
36. Moroni C, Mascalchi M, Camiciottoli G, et al. Comparison of spirometric-gated and -ungated HRCT in COPD. J Comput Assist Tomogr. 2003;27(3):375-379. doi: http://dx.doi.org/10.1097/00004728-200305000-00013.
37. Madani A, De Maertelaer V, Zanen J, Gevenois PA. Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification--comparison with macroscopic and microscopic morphometry. Radiology. 2007;243(1):250-257. doi: http://dx.doi.org/10.1148/radiol.2431060194.
38. Boedeker KL, McNitt-Gray MF, Rogers SR, et al. Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology. 2004;232(1):295-301. doi: http://dx.doi.org/10.1148/radiol.2321030383.
39. Newell J, Sieren J, Hoffman E. Development of quantitative CT lung protocols. J of Thorac Imaging. 2013;28(5): 266-271. doi: http://dx.doi.org/10.1097/RTI.0b013e31829f6796.
40. Grydeland TB, Dirksen A, Coxson HO, et al. Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J. 2009;34(4):858-865.doi: http://dx.doi.org/10.1183/09031936.00167908.
41. Camiciottoli G, Cavigli E, Grassi L, et al. Prevalence and correlates of pulmonary emphysema in smokers and former smokers. A densitometric study of participants in the ITALUNG trial. Eur Radiol. 2009;19(1):58-66. doi: http://dx.doi.org/10.1007/s00330-008-1131-6.
42. Ashraf H, Lo P, Shaker SB, et al. Short-term effect of changes in smoking behaviour on emphysema quantification by CT. Thorax. 2011;66(1):55-60. doi: http://dx.doi.org/10.1136/thx.2009.132688.
43. Shaker SB, Stavngaard T, Laursen LC, Stoel BC, Dirksen A. Rapid fall in lung density following smoking cessation in COPD. COPD. 2011;8(1):2-7. doi: http://dx.doi.org/10.3109/15412555.2010.541306.
44. Bakker ME, Stolk J, Putter H, et al. Variability in densitometric assessment of pulmonary emphysema with computed tomography. Invest Radiol. 2005;40(12):777-783. doi: http://dx.doi.org/10.1097/01.rli.0000186418.31139.21.
45. Stoel BC, Putter H, Bakker ME, et al. Volume correction in computed tomography densitometry for follow-up studies on pulmonary emphysema. Proc Am Thorac Soc. 2008;5(9):919-924.doi: http://dx.doi.org/10.1513/pats.200804-040QC.
46. Dirksen A, Piitulainen E, Parr DG, et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. Eur Respir J. 2009;33(6):1345-1353.doi: http://dx.doi.org/10.1183/09031936.00159408.
47. Stockley RA, Parr DG, Piitulainen E, Stolk J, Stoel BC, Dirksen A. Therapeutic efficacy of alpha-1 antitrypsin augmentation therapy on the loss of lung tissue: an integrated analysis of 2 randomised clinical trials using computed tomography densitometry. Respir Res. 2010;11:136. doi: http://dx.doi.org/10.1186/1465-9921-11-136
48. Mohamed Hoesein FA, Zanen P, de Jong PA, et al. Rate of progression of CT-quantified emphysema in male current and ex-smokers: a follow-up study. Respir Res. 2013;14:55. doi: http://dx.doi.org/10.1186/1465-9921-14-55.
49. Staring M, Bakker ME, Stolk J, Shamonin DP, Reiber JH, Stoel BC. Towards local progression estimation of pulmonary emphysema using CT. Med Phys. 2014;41(2):021905. doi: 10.1118/1.4851535.doi: http://dx.doi.org/10.1118/1.4851535.
50. Murphy K, Pluim JPW, van Rikxoort EM, et al. Toward automatic regional analysis of pulmonary function using inspiration and expiration thoracic CT. Med Phys. 2012;39(3):1650-1662.doi: http://dx.doi.org/10.1118/1.3687891
51. Mets OM, Willemink MJ, de Kort FP, et al. The effect of iterative reconstruction on computed tomography assessment of emphysema, air trapping and airway dimensions. Eur Radiol. 2012;22(10):2103-2109. doi: http://dx.doi.org/10.1007/s00330-012-2489-z.
52. Mohamed Hoesein FA, de Jong PA, Lammers JW, et al. Computed tomography structural lung changes in discordant airflow limitation. PLoS One. 2013;8(6):e65177. doi: http://dx.doi.org/10.1371/journal.pone.0065177.
53. Barbosa EM, Jr., Song G, Tustison N, et al. Computational analysis of thoracic multidetector row HRCT for segmentation and quantification of small airway air trapping and emphysema in obstructive pulmonary disease. Acad Radiol. 2011;18(10):1258-1269. doi: http://dx.doi.org/10.1016/j.acra.2011.06.004.
54. Galban CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711-1715.doi: http://dx.doi.org/10.1038/nm.2971.
55. Grydeland TB, Thorsen E, Dirksen A, et al. Quantitative CT measures of emphysema and airway wall thickness are related to D(L)CO. Respir Med. 2011;105(3):343-351. doi: http://dx.doi.org/10.1016/j.rmed.2010.10.018.
56. Nakano Y, Wong JC, de Jong PA, et al. The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med. 2005;171(2):142-146. doi: http://dx.doi.org/10.1164/rccm.200407-874OC.
57. Grydeland TB, Dirksen A, Coxson HO, et al. Quantitative computed tomography measures of emphysema and airway wall thickness are related to respiratory symptoms. Am J Respir Crit Care Med. 2010;181(4):353-359. doi: http://dx.doi.org/10.1164/rccm.200907-1008OC.
58. Washko GR, Dransfield MT, Estepar RSJ, et al. Airway wall attenuation: a biomarker of airway disease in subjects with COPD. J Appl Physiol. 2009;107(1):185-191. doi: http://dx.doi.org/10.1152/japplphysiol.00216.2009.
59. Ginsburg SB, Lynch DA, Bowler RP, Schroeder JD. Automated texture-based quantification of centrilobular nodularity and centrilobular emphysema in chest CT images. Acad Radiol. 2012;19(10):1241-1251. doi: http://dx.doi.org/10.1016/j.acra.2012.04.020.
60. Castaldi PJ, San Jose Estepar R, Mendoza CS, et al. Distinct quantitative computed tomography emphysema patterns are associated with physiology and function in smokers. Am J Respir Crit Care Med. 2013;188(9):1083-1090. doi: http://dx.doi.org/10.1164/rccm.201305-0873OC.
61. Barr RG, Berkowitz EA, Bigazzi F, et al. A combined pulmonary-radiology workshop for visual evaluation of COPD: study design, chest CT findings and concordance with quantitative evaluation. COPD. 2012;9(2):151-159. doi: http://dx.doi.org/10.3109/15412555.2012.654923.
62. de Torres JP, Bastarrika G, Wisnivesky JP, et al. Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest. 2007;132(6):1932-1938.doi: http://dx.doi.org/10.1378/chest.07-1490.
63. Wilson DO, Weissfeld JL, Balkan A, et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med. 2008;178(7):738-744. doi: http://dx.doi.org/10.1164/rccm.200803-435OC.
64. Gierada DS, Guniganti P, Newman BJ, et al. Quantitative CT assessment of emphysema and airways in relation to lung cancer risk. Radiology. 2011;261(3):950-959. doi: http://dx.doi.org/10.1148/radiol.11110542.
65. Wilson DO, Leader JK, Fuhrman CR, Reilly JJ, Sciurba FC, Weissfeld JL. Quantitative computed tomography analysis, airflow obstruction, and lung cancer in the pittsburgh lung screening study. J Thorac Oncol. 2011;6(7):1200-1205. doi: http://dx.doi.org/10.1097/JTO.0b013e318219aa93.
66. Kishi K, Gurney JW, Schroeder DR, Scanlon PD, Swensen SJ, Jett JR. The correlation of emphysema or airway obstruction with the risk of lung cancer: a matched case-controlled study. Eur Respir J. 2002;19(6):1093-1098. doi: http://dx.doi.org/10.1183/09031936.02.00264202.
67. Mets OM, van Hulst RA, Jacobs C, van Ginneken B, de Jong PA. Normal range of emphysema and air trapping on CT in young men. AJR Am J Roentgenol. 2012;199(2):336-340. doi: http://dx.doi.org/10.2214/AJR.11.7808.
68. Zach JA, Newell JD, Jr., Schroeder J, et al. Quantitative computed tomography of the lungs and airways in healthy nonsmoking adults. 2012;47(10):596-602. doi: http://dx.doi.org/10.1097/RLI.0b013e318262292e.
69. Smith BM, Barr RG. Establishing normal reference values in quantitative computed tomography of emphysema. J Thorac Imaging. 2013;28(5):280-283. doi: http://dx.doi.org/10.1097/RTI.0b013e3182a0d805.
70. Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125-1132. doi: http://dx.doi.org/10.1164/rccm.201201-0051OC.
71. Torigian DA, Dam V, Chen X, et al. In vivo quantification of pulmonary inflammation in relation to emphysema severity via partial volume corrected (18)F-FDG-PET using computer-assisted analysis of diagnostic chest CT. Hell J Nucl Med. 2013;16(1):12-18.
72. Gierada DS, Woods JC, Jacob RE, et al. Emphysema quantification in inflation-fixed lungs using low-dose computed tomography and 3He magnetic resonance imaging. J Comput Assist Tomogr. 2010;34(5):773-779. doi: http://dx.doi.org/10.1097/RCT.0b013e3181e480f9.
73. Emami K, Chia E, Kadlecek S, et al. Regional correlation of emphysematous changes in lung function and structure: a comparison between pulmonary function testing and hyperpolarized MRI metrics. J Appl Physiol. 2011;110(1):225-235. doi: http://dx.doi.org/10.1152/japplphysiol.00269.2010.
74. Marshall H, Deppe MH, Parra-Robles J, et al. Direct visualisation of collateral ventilation in COPD with hyperpolarised gas MRI. Thorax. 2012;67(7):613-617. doi: http://dx.doi.org/10.1136/thoraxjnl-2011-200864.
75. Quirk JD, Lutey BA, Gierada DS, et al. In vivo detection of acinar microstructural changes in early emphysema with (3)He lung morphometry. Radiology. 2011;260(3):866-874. doi: http://dx.doi.org/10.1148/radiol.11102226.
76. Wang C, Mugler JP, 3rd, de Lange EE, Patrie JT, Mata JF, Altes TA. Lung injury induced by secondhand smoke exposure detected with hyperpolarized helium-3 diffusion MR. J Magn Reson Imaging. 2014;39(1):77-84.doi: http://dx.doi.org/10.1002/jmri.24104.
77. Kirby M, Svenningsen S, Kanhere N, et al. Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema. J Appl Physiol. 2013;114(6):707-715.doi: http://dx.doi.org/10.1152/japplphysiol.01206.2012.
78. Iguchi S, Imai H, Hori Y, Nakajima J, Kimura A, Fujiwara H. Direct imaging of hyperpolarized 129Xe alveolar gas uptake in a mouse model of emphysema. Magn Reson Med. 2013;70(1):207-215.doi: http://dx.doi.org/10.1002/mrm.24452
79. Ouriadov A, Farag A, Kirby M, McCormack DG, Parraga G, Santyr GE. Lung morphometry using hyperpolarized (129) Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease. Magn Reson Med. 2013;70(6):1699-1706. doi: http://dx.doi.org/10.1002/mrm.24595.
80. Kirby M, Svenningsen S, Owrangi A, et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers and patients with chronic obstructive pulmonary disease. Radiology. 2012;265(2):600-610.doi: http://dx.doi.org/10.1148/radiol.12120485.
81. Halaweish AF, Moon RE, Foster WM, et al. Perfluoropropane gas as a magnetic resonance lung imaging contrast agent in humans. Chest. 2013;144(4):1300-1310. doi: http://dx.doi.org/10.1378/chest.12-2597.
82. Wielputz M, Kauczor HU. MRI of the lung: state of the art. Diagn Interv Radiol. 2012;18(4):344-353.
83. Eichinger M, Tetzlaff R, Puderbach M, Woodhouse N, Kauczor HU. Proton magnetic resonance imaging for assessment of lung function and respiratory dynamics. Eur J Radiol. 2007;64(3):329-334.doi: http://dx.doi.org/10.1016/j.ejrad.2007.08.007.
84. Ley-Zaporozhan J, Ley S, Eberhardt R, Kauczor HU, Heussel CP. Visualization of morphological parenchymal changes in emphysema: comparison of different MRI sequences to 3D-HRCT. Eur J Radiol. 2010;73(1):43-49.doi: http://dx.doi.org/10.1016/j.ejrad.2008.09.029.
85. Zurek M, Boyer L, Caramelle P, Boczkowski J, Cremillieux Y. Longitudinal and noninvasive assessment of emphysema evolution in a murine model using proton MRI. Magn Reson Med. 2012;68(3):898-904.doi: http://dx.doi.org/10.1002/mrm.23281.