1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993. 75(5): 843-854.
2. Nana-Sinkam SP, Hunter MG, Nuovo GJ, et al. Integrating the MicroRNome into the study of lung disease. Am J Respir Crit Care Med. 2009. 179(1): 4-10. doi: <a href="http://dx.doi.org/10.1164/rccm.200807- 1042PP" target="_blank">http://dx.doi.org/10.1164/rccm.200807-1042PP
3. Fabbri M, Garzon R, Cimmino A, et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 2007. 104(40): 15805-15810. doi: http://dx.doi.org/10.1073/pnas.0707628104
4. Garzon R, Liu S, Fabbri M, et al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood. 2009. 113(25): 6411-6418. doi: http://dx.doi.org/10.1182/blood-2008-07-170589
5. Baek D, Villen J, Shin C, et al. The impact of microRNAs on protein output. Nature. 2008. 455(7209): 64-71. doi: http://dx.doi.org/10.1038/nature07242
6. Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell. 2008. 132(5): 875-886. doi: http://dx.doi.org/10.1016/j.cell.2008.02.019
7. Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol. 2007. 310(2): 442-453. doi: http://dx.doi.org/10.1016/j.ydbio.2007.08.007
8. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006. 103(33): 12481-12486. doi: http://dx.doi.org/10.1073/pnas.0605298103
9. Tili E, Michaille JJ, Calin GA. Expression and function of micro-RNAs in immune cells during normal or disease state. Int J Med Sci. 2008. 5(2): 73-79. doi: http://dx.doi.org/10.7150/ijms.5.73
10. Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004. 64(11): 3753-3756. doi: http://dx.doi.org/10.1158/0008-5472.CAN-04-0637
11. Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005. 65(21): 9628-9632. doi: http://dx.doi.org/10.1158/0008-5472.CAN-05-2352
12. Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009. 106(44): 18704-18709. doi: http://dx.doi.org/10.1073/pnas.0905063106
13. Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med. 2009. 180(8): 713-719. doi: http://dx.doi.org/10.1164/rccm.200903-0325OC
14. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science. 2007. 316(5824): 608-611. doi: http://dx.doi.org/10.1126/science.1139253
15. Sato T, Liu X, Basma H, et al. IL-4 induces differentiation of human embryonic stem cells into fibrogenic fibroblast-like cells. J Allergy Clin Immunol. 2011. 127(6): 1595-603 e9. doi: http://dx.doi.org/10.1016/j.jaci.2011.01.049
16. Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010. 207(8): 1589-1597. doi: http://dx.doi.org/10.1084/jem.20100035
17. Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010. 182(2): 220-229. doi: <a href="http://dx.doi.org/10.1164/rccm.200911- 1698OC" target="_blank">http://dx.doi.org/10.1164/rccm.200911-1698OC
18. Schembri F, Sridhar S, Perdomo C, et al. MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium. Proc Natl Acad Sci U S A. 2009. 106(7): 2319-2324. doi: http://dx.doi.org/10.1073/pnas.0806383106
19. Ezzie ME, Crawford M, Cho JH, et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012. 67(2): 122-131. doi: http://dx.doi.org/10.1136/thoraxjnl-2011-200089
20. Sato T, Liu X, Nelson A, et al. Reduced miR-146a increases prostaglandin E(2)in chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med. 2010. 182(8): 1020-1029. doi: <a href="http://dx.doi.org/10.1164/rccm.201001 -0055OC" target="_blank">http://dx.doi.org/10.1164/rccm.201001-0055OC
21. Stanczyk J, Pedrioli DM, Brentano F, et al. Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheum. 2008. 58(4): 1001-1009. doi: http://dx.doi.org/10.1002/art.23386
22. Nakasa T, Miyaki S, Okubo A, et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum. 2008. 58(5): 1284-1292. doi: http://dx.doi.org/10.1002/art.23429
23. Osei ET, Florez-Sampedro L, Timens W, et al. Unravelling the complexity of COPD by microRNAs: it's a small world after all. Eur Respir J. 2015. 46(3): 807-818. doi: <a href="http://dx.doi.org/10.1183/13993003.02139- 2014" target="_blank">http://dx.doi.org/10.1183/13993003.02139-2014
24. Booton R, Lindsay MA. Emerging role of MicroRNAs and long noncoding RNAs in respiratory disease. Chest. 2014. 146(1): 193-204. doi: http://dx.doi.org/10.1378/chest.13-2736
25. Lewis A, Riddoch-Contreras J, Natanek SA, et al. Downregulation of the serum response factor/miR-1 axis in the quadriceps of patients with COPD. Thorax. 2012. 67(1): 26-34. doi: <a href="http://dx.doi.org/10.1136/thoraxjnl-2011- 200309" target="_blank">http://dx.doi.org/10.1136/thoraxjnl-2011-200309
26. Donaldson A, Natanek SA, Lewis A, et al. Increased skeletal muscle-specific microRNA in the blood of patients with COPD. Thorax. 2013. 68(12): 1140-1149. doi: <a href="http://dx.doi.org/10.1136/thoraxjnl-2012- 203129" target="_blank">http://dx.doi.org/10.1136/thoraxjnl-2012-203129
27. Van Pottelberge GR, Mestdagh P, Bracke KR, et al. MicroRNA expression in induced sputum of smokers and patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011. 183(7): 898-906. doi: http://dx.doi.org/10.1164/rccm.201002-0304OC
28. D'Hulst A I, Bracke KR, Maes T, et al. Role of tumour necrosis factor-alpha receptor p75 in cigarette smoke-induced pulmonary inflammation and emphysema. Eur Respir J. 2006. 28(1): 102-112. doi: http://dx.doi.org/10.1183/09031936.06.00059305
29. Hassan F, Nuovo GJ, Crawford M, et al. MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One. 2012. 7(11): e50837. doi: http://dx.doi.org/10.1371/journal.pone.0050837
30. Christenson SA, Brandsma CA, Campbell JD, et al. miR-638 regulates gene expression networks associated with emphysematous lung destruction. Genome Med. 2013. 5(12): 114. doi: http://dx.doi.org/10.1186/gm519
31. Conrad KD, Niepmann M. The role of microRNAs in hepatitis C virus RNA replication. Arch Virol. 2014. 159(5): 849-862. doi: http://dx.doi.org/10.1007/s00705-013-1883-4
32. Janssen HL, Reesink HW, Lawitz EJ, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013. 368(18): 1685-1694. doi: http://dx.doi.org/10.1056/NEJMoa1209026
33. Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A. 2008. 105(10): 3903-3908. doi: http://dx.doi.org/10.1073/pnas.0712321105
34. Trang P, Medina PP, Wiggins JF, et al. Regression of murine lung tumors by the let-7 microRNA. Oncogene. 2010. 29(11): 1580-1587. doi: http://dx.doi.org/10.1038/onc.2009.445
35. Oglesby IK, McElvaney NG, Greene CM. MicroRNAs in inflammatory lung disease--master regulators or target practice? Respir Res. 2010. 11: 148. doi: http://dx.doi.org/10.1186/1465-9921-11-148
36. Chernolovskaya EL, Zenkova MA. Chemical modification of siRNA. Curr Opin Mol Ther. 2010. 12(2): 158-167.
37. Fujita Y, Takeshita F, Mizutani T, et al. A novel platform to enable inhaled naked RNAi medicine for lung cancer. Sci Rep. 2013. 3: 3325. doi: http://dx.doi.org/10.1038/srep03325
38. Fujita Y, Takeshita F, Kuwano K, Ochiya T. RNAi Therapeutic Platforms for Lung Diseases. Pharmaceuticals (Basel). 2013. 6(2): 223-250. doi: http://dx.doi.org/10.3390/ph6020223
39. Fujita Y, Kosaka N, Araya J, Kuwano K, Ochiya T. Extracellular vesicles in lung microenvironment and pathogenesis. Trends Mol Med. 2015. doi: http://dx.doi.org/10.1016/j.molmed.2015.07.004
40. Ismail N, Wang Y, Dakhlallah D, et al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood. 2013. 121(6): 984-995. doi: <a href="http://dx.doi.org/10.1182/blood-2011-08- 374793" target="_blank">http://dx.doi.org/10.1182/blood-2011-08-374793
41. Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol. 2013. 131(4): 1194-1203, 203 e1-14. doi: http://dx.doi.org/10.1016/j.jaci.2012.12.1565
42. Fujita Y, Yoshioka Y, Ito S, et al. Intercellular communication by extracellular vesicles and their microRNAs in asthma. Clin Ther. 2014. 36(6): 873-881. doi: http://dx.doi.org/10.1016/j.clinthera.2014.05.006
43. Takahashi T, Kubo H. The role of microparticles in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2014. 9: 303-314. doi: http://dx.doi.org/10.2147/COPD.S38931
44. Gordon C, Gudi K, Krause A, et al. Circulating endothelial microparticles as a measure of early lung destruction in cigarette smokers. Am J Respir Crit Care Med. 2011. 184(2): 224-232. doi: <a href="http://dx.doi.org/10.1164/rccm.201012- 2061OC" target="_blank">http://dx.doi.org/10.1164/rccm.201012-2061OC
45. Takahashi T, Kobayashi S, Fujino N, et al. Annual FEV1 changes and numbers of circulating endothelial microparticles in patients with COPD: a prospective study. BMJ Open. 2014. 4(3): e004571. doi: http://dx.doi.org/10.1136/bmjopen-2013-004571
46. Brosius J. Waste not, want not--transcript excess in multicellular eukaryotes. Trends Genet. 2005. 21(5): 287-288. doi: http://dx.doi.org/10.1016/j.tig.2005.02.014
47. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012. 338(6113): 1435-1439. doi: http://dx.doi.org/10.1126/science.1231776
48. Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003. 22(39): 8031-8041. doi: http://dx.doi.org/10.1038/sj.onc.1206928
49. Nakagawa T, Endo H, Yokoyama M, et al. Large noncoding RNA HOTAIR enhances aggressive biological behavior and is associated with short disease-free survival in human non-small cell lung cancer. Biochem Biophys Res Commun. 2013. 436(2):319-324. doi: http://dx.doi.org/10.1016/j.bbrc.2013.05.101
50. Thai P, Statt S, Chen CH, et al. Characterization of a novel long noncoding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol. 2013. 49(2): 204-211. doi: http://dx.doi.org/10.1165/rcmb.2013-0159RC
51. Rangasamy T, Cho CY, Thimmulappa RK, et al. Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest. 2004. 114(9): 1248-1259. doi: http://dx.doi.org/10.1172/JCI21146