1. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 2006; 3(11): e442.doi: http://dx.doi.org/10.1371/journal.pmed.0030442
2. Lopez AD, Shibuya K, Rao C, et al. Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J. 2006; 27(2): 397-412. doi: http://dx.doi.org/10.1183/09031936.06.00025805
3. Regalado J, Pérez-Padilla R, Sansores R, et al. The effect of biomass burning on respiratory symptoms and lung function in rural Mexican women. Am J Respir Crit Care Med. 2006; 174(8): 901-5. doi: http://dx.doi.org/10.1164/rccm.200503-479OC
4. Jaganath D, Miranda JJ, Gilman RH, et al. Prevalence of chronic obstructive pulmonary disease and variation in risk factors across four geographically diverse resource-limited settings in Peru. Respir Res. 2015; 16: 40. doi: http://dx.doi.org/10.1186/s12931-015-0198-2
5. MacNee W, Rabinovich RA, Choudhury G. Ageing and the border between health and disease. Eur Respir J. 2014; 44(5): 1332-52. doi: http://dx.doi.org/10.1183/09031936.00134014
6. Pauwels RA, Buist AS, Calverley PMA, Jenkins CR, Hurd SS. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001; 163(5): 1256-76. doi: http://dx.doi.org/10.1164/ajrccm.163.5.2101039
7. Global initiative for chronic Obstructive Pulmonary Disease (GOLD). Global initiative for chronic Obstructive Disease: Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, updated November, 2006. GOLD website. http://wwwgoldcopdorg/uploads/users/files/GOLDReport2006_0122pdf . Published 2006. Accessed August 27, 2015.
8. Global initiative for chronic Obstructive Disease (GOLD). Global initiative for chronic Obstructive Disease: Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease, updated 2015. GOLD website. http://wwwgoldcopdorg/uploads/users/files/GOLD_Report_2015pdf. Published 2015. Accessed Aug 27, 2015.
9. Antó JM, Vermeire P, Vestbo J, Sunyer J. Epidemiology of chronic obstructive pulmonary disease. Eur Respir J. 2001; 17(5): 982-94. doi: http://dx.doi.org/10.1183/09031936.01.17509820
10. Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). Parallel epidemics of the 21(st) century. Int J Environ Res Public Health. 2009; 6(1): 209-24. doi: http://dx.doi.org/10.3390/ijerph6010209
11. Forey BA, Thornton AJ, Lee PN. Systematic review with meta-analysis of the epidemiological evidence relating smoking to COPD, chronic bronchitis and emphysema. BMC Pulm Med. 2011; 11: 36. doi: http://dx.doi.org/10.1186/1471-2466-11-36
12. Zamarro Garcia C, Bernabe Barrios MJ, Santamaria Rodriguez B, Rodriguez Hermosa JL. Tabaquismo en la enfermedad pulmonar obstructiva crónica. Arch Bronconeumol. 2011; 47 (Suppl 8): 3-9. doi: http://dx.doi.org/10.1016/S0300-2896(11)70059-X
13. Ortells MO, Arias HR. Neuronal networks of nicotine addiction. Int J Biochem Cell Biol. 2010; 42(12): 1931-1935. doi: http://dx.doi.org/10.1016/j.biocel.2010.08.019
14. Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977; 1(6077): 1645-1648. doi: http://dx.doi.org/10.1136/bmj.1.6077.1645
15. Rennard SI, Vestbo J. COPD: the dangerous underestimate of 15%. Lancet. 2006; 367(9518): 1216-1219. doi: http://dx.doi.org/10.1016/S0140-6736(06)68516-4
16. Lundbäck B, Lindberg A, Lindström M, et al. Not 15 but 50% of smokers develop COPD?—Report from the Obstructive Lung Disease in Northern Sweden studies. Respir Med; 97(2): 115-122. doi: http://dx.doi.org/10.1053/rmed.2003.1446
17. Løkke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD: a 25 year follow up study of the general population. Thorax. 2006; 61(11): 935-939. doi: http://dx.doi.org/10.1136/thx.2006.062802
18. Sandler DP, Comstock GW, Helsing KJ, Shore DL. Deaths from all causes in non-smokers who lived with smokers. Am J Public Health . 1989; 79(2): 163-167. doi: http://dx.doi.org/10.2105/AJPH.79.2.163
19. Kalandidi A, Trichopoulos D, Hatzakis A, Tzannes S, Saracci R. Passive smoking and chronic obstructive lung disease. Lancet. 1987; 330(8571): 1325-1326. doi: http://dx.doi.org/10.1016/S0140-6736(87)91210-4
20. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med. 2000; 343(4): 269-280. doi: http://dx.doi.org/10.1056/NEJM200007273430407
21. Assad NA, Balmes J, Mehta S, Cheema U, Sood A. Chronic obstructive pulmonary disease secondary to household air pollution. Semin Respir Crit Care Med. 2015; 36(03): 408-421. doi: http://dx.doi.org/10.1055/s-0035-1554846
22. Korn RJ, Dockery DW, Speizer FE, Ware JH, Ferris BG. Occupational exposures and chronic respiratory symptoms: a population-based study. Am Rev Respir Dis. 1987; 136(2): 298-304. doi: http://dx.doi.org/10.1164/ajrccm/136.2.298
23. Bergdahl IA, Torén K, Eriksson K, et al. Increased mortality in COPD among construction workers exposed to inorganic dust. Eur Respir J. 2004; 23(3): 402-406. doi: http://dx.doi.org/10.1183/09031936.04.00034304
24. Humerfelt S, Gulsvik A, Skjaerven R, et al. Decline in FEV1 and airflow limitation related to occupational exposures in men of an urban community. Eur Respir J. 1993; 6(8): 1095-1103.
25. Salvi S. Tobacco smoking and environmental risk factors for chronic obstructive pulmonary disease. Clin Chest Med. 2014; 35(1): 17-27. doi: http://dx.doi.org/10.1016/j.ccm.2013.09.011
26. Ingebrigtsen T, Thomsen SF, Vestbo J, et al. Genetic influences on chronic obstructive pulmonary disease - a twin study. Respir Med. 2010; 104(12): 1890-1895. doi: http://dx.doi.org/10.1016/j.rmed.2010.05.004
27. Stoller JK, Aboussouan LS. Alpha1-antitrypsin deficiency. Lancet. 2005; 365(9478): 2225-2236. doi: http://dx.doi.org/10.1016/S0140-6736(05)66781-5
28. DeMeo D, Silverman E. α(1)-Antitrypsin deficiency 2: Genetic aspects of α(1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax. 2004; 59(3): 259-264. doi: http://dx.doi.org/10.1136/thx.2003.006502
29. Stockley RA. Alpha-1antitrypsin review. Clin Chest Med. 2014; 35(1): 39-50. doi: http://dx.doi.org/10.1016/j.ccm.2013.10.001
30. Silverman EK, Chapman HA, Drazen JM, et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998; 157(6): 1770-1778. doi: http://dx.doi.org/10.1164/ajrccm.157.6.9706014
31. McCloskey SC, Patel BD, Hinchliffe SJ, Reid ED, Wareham NJ, Lomas DA. Siblings of patients with severe chronic obstructive pulmonary disease have a significant risk of airflow obstruction. Am J Respir Crit Care Med. 2001; 164(8): 1419-1424. doi: http://dx.doi.org/10.1164/ajrccm.164.8.2105002
32. Castaldi PJ, Cho MH, Cohn M, et al. The COPD genetic association compendium: a comprehensive online database of COPD genetic associations. Hum Mol Genet. 2010; 19(3): 526-534. doi: http://dx.doi.org/10.1093/hmg/ddp519
33. Marciniak SJ, Lomas DA. Genetic susceptibility. Clin Chest Med. 2014; 35(1): 29-38. doi: http://dx.doi.org/10.1016/j.ccm.2013.10.008
34. Foreman MG, Zhang L, Murphy J, et al. Early-onset chronic obstructive pulmonary disease is associated with female sex, maternal factors, and African American race in the COPDGene study. Am J Respir Crit Care Med. 2011; 184(4): 414-420. doi: http://dx.doi.org/10.1164/rccm.201011-1928OC
35. Bruse S, Sood A, Petersen H, et al. New Mexican hispanic smokers have lower odds of chronic obstructive pulmonary disease and less decline in lung function than non-Hispanic whites. Am J Respir Crit Care Med. 2011; 184(11): 1254-1260. doi: http://dx.doi.org/10.1164/rccm.201103-0568OC
36. Wain LV, Shrine N, Miller S, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet Respir Med. 2015; 3(10): 769-781. doi: http://dx.doi.org/10.1016/S2213-2600(15)00283-0
37. Cho MH, Castaldi PJ, Hersh CP, et al. A genome-wide association study of emphysema and airway quantitative imaging phenotypes. Am J Respir Crit Care Med. 2015; 192(5): 559-569. doi: http://dx.doi.org/10.1164/rccm.201501-0148OC
38. Kim DK, Cho MH, Hersh CP, et al. Genome-wide association analysis of blood biomarkers in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012; 186(12): 1238-1247. doi: http://dx.doi.org/10.1164/rccm.201206-1013OC
39. Laucho-Contreras ME, Polverino F, Gupta K, et al. Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur Respir J. 2015; 45(6): 1544-1556. doi: http://dx.doi.org/10.1183/09031936.00134214
40. Zhu L, Di PY, Wu R, Pinkerton KE, Chen Y. Repression of CC16 by cigarette smoke (CS) exposure. PLoS One. 2015; 10(1): e0116159. doi: http://dx.doi.org/10.1371/journal.pone.0116159
41. Han MK, Postma D, Mannino DM, et al. Gender and chronic obstructive pulmonary disease: why it matters. Am J Respir Crit Care Med. 2007; 176(12): 1179-1184. doi: http://dx.doi.org/10.1164/rccm.200704-553CC
42. Gan WQ, Man SFP, Postma DS, Camp P, Sin DD. Female smokers beyond the perimenopausal period are at increased risk of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Res. 2006; 7(1): 52. doi: http://dx.doi.org/10.1186/1465-9921-7-52
43. Tam A, Churg A, Wright JL, et al. Sex differences in airway remodeling in a mouse model of chronic obstructive pulmonary disease. Am J Respir Crit Care Med . 2016; 193(8): 825-834. doi: http://dx.doi.org/10.1164/rccm.201503-0487OC
44. Barnes PJ. Sex differences in chronic obstructive pulmonary disease mechanisms. Am J Respir Crit Care.2016; 193(8): 813-814. doi: http://dx.doi.org/10.1164/rccm.201512-2379ED.
45. Assad NA, Sood A. Leptin, adiponectin and pulmonary diseases. Biochimie . 2012; 94(10): 2180-2189. doi: http://dx.doi.org/10.1016/j.biochi.2012.03.006
46. Breyer MK, Rutten EP, Vernooy JH, et al. Gender differences in the adipose secretome system in chronic obstructive pulmonary disease (COPD): a pivotal role of leptin. Respir Med. 2011; 105(7): 1046-1053.doi: http://dx.doi.org/10.1016/j.rmed.2011.02.001
47. Massaro D, Massaro GD. toward therapeutic pulmonary alveolar regeneration in humans. Proc Am Thorac Soc. 2006; 3(8): 709-712. doi: http://dx.doi.org/10.1513/pats.200605-127SF
48. Gershon AS, Dolmage TE, Stephenson A, Jackson B. chronic obstructive pulmonary disease and socioeconomic status: a systematic review. COPD. 2012; 9(3): 216-226. doi: http://dx.doi.org/10.3109/15412555.2011.648030
49. Prescott E, Vestbo J. Socioeconomic status and chronic obstructive pulmonary disease. Thorax. 1999; 54(8): 737-741. doi: http://dx.doi.org/10.1136/thx.54.8.737
50. Stebbings J. Chronic respiratory disease among nonsmokers in Hagerstown, Maryland. 3. Social class and chronic respiratory disease. Environ Res. 1971; 4(3): 213-232. doi: http://dx.doi.org/10.1016/0013-9351(71)90024-7
51. Van den Bosch K, Geerts J, Willemé P. Long-term care use and socio-economic status in Belgium: a survival analysis using health care insurance data. Arch Public Health. 2013; 71(1): 1. doi: http://dx.doi.org/10.1186/0778-7367-71-1
52. Eisner MD, Blanc PD, Omachi TA, et al. Socioeconomic status, race and COPD health outcomes. J Epidemiol Community Health. 2011; 65(1): 26-34. doi: http://dx.doi.org/10.1136/jech.2009.089722
53. Martinez FD. The origins of asthma and chronic obstructive pulmonary disease in early life. Proc Am Thorac Soc. 2009; 6(3): 272-277. doi: http://dx.doi.org/10.1513/pats.200808-092RM
54. Postma DS, Bush A, van den Berge M. Risk factors and early origins of chronic obstructive pulmonary disease. Lancet; 385(9971): 899-909. doi: http://dx.doi.org/10.1016/S0140-6736(14)60446-3
55. Bolton CE. COPD as a consequence of premature birth? Controversies in COPD. ERS Monogr. 2015; 69: 26-34.
56. Barker DJ, Godfrey KM, Fall C, Osmond C, Winter PD, Shaheen SO. Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ. 1991; 303(6804): 671-675. doi: http://dx.doi.org/10.1136/bmj.303.6804.671
57. Lopez Bernal JA, Upton MN, Henderson AJ, et al. Lower respiratory tract infection in the first year of life is associated with worse lung function in adult life: prospective results from the Barry Caerphilly Growth study. Ann Epidemiol. 2013; 23(7): 422-427. doi: http://dx.doi.org/10.1016/j.annepidem.2013.05.006
58. Svanes C, Sunyer J, Plana E, et al. Early life origins of chronic obstructive pulmonary disease. Thorax. 2010; 65(1): 14-20. doi: http://dx.doi.org/10.1136/thx.2008.112136
59. Rijcken B, Schouten JP, Xu X, Rosner B, Weiss ST. Airway hyperresponsiveness to histamine associated with accelerated decline in FEV1. Am J Respir Crit Care Med. 1995; 151(5): 1377-1382. doi: http://dx.doi.org/10.1164/ajrccm.151.5.7735588
60. Tashkin DP, Altose MD, Connett JE, Kanner RE, Lee WW, Wise RA. Methacholine reactivity predicts changes in lung function over time in smokers with early chronic obstructive pulmonary disease. The Lung Health Study Research Group. Am J Respir Crit Care Med .1996; 153(6): 1802-1811. doi: http://dx.doi.org/10.1164/ajrccm.153.6.8665038
61. Hansen EF, Phanareth K, Laursen LC, Kok-Jensen A, Dirksen A. Reversible and irreversible airflow obstruction as predictor of overall mortality in asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999; 159(4): 1267-1271. doi: http://dx.doi.org/10.1164/ajrccm.159.4.9807121
62. Peat JK, Woolcock AJ, Cullen K. Rate of decline of lung function in subjects with asthma. Eur Respir J.1987; 70(3): 171-179.
63. Postma DS, Timens W. Remodeling in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2006; 3(5): 434-439. doi: http://dx.doi.org/10.1513/pats.200601-006AW
64. Jeffery PK. Remodeling and inflammation of bronchi in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004; 1(3): 176-183. doi: http://dx.doi.org/10.1513/pats.200402-009MS
65. Guerra S. Overlap of asthma and chronic obstructive pulmonary disease. Curr Opin Pulm Med. 2005; 11(1): 7-13. doi: http://dx.doi.org/10.1097/01.mcp.0000146780.33963.bf
66. Papaiwannou A, Zarogoulidis P, Porpodis K, et al. Asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): current literature review. J Thorac Dis. 2014; 6 (Suppl 1): S146-151.
67. Barrecheguren M, Esquinas C, Miravitlles M. The asthma-chronic obstructive pulmonary disease overlap syndrome (ACOS): opportunities and challenges. Curr Opin Pulm Med. 2015; 21(1): 74-79. doi: http://dx.doi.org/10.1097/MCP.0000000000000118
68. Nielsen M, Barnes CB, Ulrik CS. Clinical characteristics of the asthma-COPD overlap syndrome--a systematic review. Int J Chron Obstruct Pulmon Di.s 2015; 10: 1443-1454.
69. Riise GC, Larsson S, Andersson BA. A bronchoscopic brush biopsy study of large airway mucosal pathology in smokers with chronic bronchitis and in healthy nonsmokers. Eur Respir J. 1992; 5(4): 382-386.
70. Voynow JA, Rubin BK. Mucins, mucus, and sputum. Chest. 2009; 135(2): 505-512. doi: http://dx.doi.org/10.1378/chest.08-0412
71. Turner J, Jones CE. Regulation of mucin expression in respiratory diseases. Biochem Soc Trans. 2009; 37: 877-881. doi: http://dx.doi.org/10.1042/BST0370877
72. Sherman CB, Xu X, Speizer FE, Ferris BG, Jr., Weiss ST, Dockery DW. Longitudinal lung function decline in subjects with respiratory symptoms. Am Rev Respir Dis. 1992; 146(4): 855-859. doi: http://dx.doi.org/10.1164/ajrccm/146.4.855
73. Vestbo J, Prescott E, Lange P. Association of chronic mucus hypersecretion with FEV1 decline and chronic obstructive pulmonary disease morbidity. Copenhagen City Heart Study Group. Am J Respir Crit Care Med. 1996; 153(5): 1530-1535.doi: http://dx.doi.org/10.1164/ajrccm.153.5.8630597
74. Ramos FL, Krahnke JS, Kim V. Clinical issues of mucus accumulation in COPD. Int J Chron Obstruct Pulmon Dis. 2014; 9: 139-150.
75. de Marco R, Accordini S, Cerveri I, et al. Incidence of chronic obstructive pulmonary disease in a cohort of young adults according to the presence of chronic cough and phlegm. Am J Respir Crit Care Med. 2007; 175(1): 32-39. doi: http://dx.doi.org/10.1164/rccm.200603-381OC
76. Kim V, Rogers TJ, Criner GJ. New concepts in the pathobiology of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008; 5(4): 478-485. doi: http://dx.doi.org/10.1513/pats.200802-014ET
77. Kanner RE, Anthonisen NR, Connett JE. Lower respiratory illnesses promote FEV(1) decline in current smokers but not ex-smokers with mild chronic obstructive pulmonary disease: results from the lung health study. Am J Respir Crit Care Med. 2001; 164(3): 358-364. doi: http://dx.doi.org/10.1164/ajrccm.164.3.2010017
78. Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA. Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002; 57(10): 847-852. doi: http://dx.doi.org/10.1136/thorax.57.10.847
79. Vestbo J, Edwards LD, Scanlon PD, et al. Changes in Forced Expiratory Volume in 1 Second over Time in COPD. N Engl J Med. 2011; 365(13): 1184-1192. doi: http://dx.doi.org/10.1056/NEJMoa1105482
80. Peat JK, Woolcock AJ, Cullen K. Decline of lung function and development of chronic airflow limitation: a longitudinal study of non-smokers and smokers in Busselton, Western Australia. Thorax. 1990; 45(1): 32-37. doi: http://dx.doi.org/10.1136/thx.45.1.32
81. Finkelstein R, Fraser RS, Ghezzo H, Cosio MG. Alveolar inflammation and its relation to emphysema in smokers. Am J Respir Crit Care Med. 1995; 152(5): 1666-1672. doi: http://dx.doi.org/10.1164/ajrccm.152.5.7582312
82. Hill AT, Bayley D, Stockley RA. The interrelationship of sputum inflammatory markers in patients with chronic bronchitis. Am J Respir Crit Care Med. 1999; 160(3): 893-898. doi: http://dx.doi.org/10.1164/ajrccm.160.3.9901091
83. Keatings VM, Collins PD, Scott DM, Barnes PJ. Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med. 1996; 153(2): 530-534. doi: http://dx.doi.org/10.1164/ajrccm.153.2.8564092
84. Stockley RA. Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med. 1999; 160(5): S49-S52. doi: http://dx.doi.org/10.1164/ajrccm.160.supplement_1.13
85. Mocchegiani E, Giacconi R, Costarelli L. Metalloproteases/anti-metalloproteases imbalance in chronic obstructive pulmonary disease: genetic factors and treatment implications. Curr Opin Pulm Med. 2011; 17 Suppl 1): S11-9. doi: http://dx.doi.org/10.1097/01.mcp.0000410743.98087.12
86. Repine JE, Bast A, Lankhorst I, et al. Oxidative stress in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997; 156(2): 341-357. doi: http://dx.doi.org/10.1164/ajrccm.156.2.9611013
87. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005; 2(1): 50-60. doi: http://dx.doi.org/10.1513/pats.200411-056SF
88. Mohamed Hoesein FAA, de Hoop B, Zanen P, et al. CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax. 2011; 66(9): 782-787. doi: http://dx.doi.org/10.1136/thx.2010.145995
89. Cerveri I, Corsico AG, Grosso A, et al. The rapid FEV1 decline in chronic obstructive pulmonary disease is associated with predominant emphysema: a longitudinal study. COPD. 2012; 10(1): 55-61
90. Turato G, Zuin R, Miniati M, et al. Airway inflammation in severe chronic obstructive pulmonary disease: relationship with lung function and radiologic emphysema. Am J Respir Crit Care Med. 2002; 166(1): 105-110. doi: http://dx.doi.org/10.1164/rccm.2111084
91. Mohamed Hoesein FAA, van Rikxoort E, van Ginneken B, et al. Computed tomography-quantified emphysema distribution is associated with lung function decline. Eur Respir J. 2012; 40(4): 844-850. doi: http://dx.doi.org/10.1183/09031936.00186311
92. Hughes JA, Hutchison DC, Bellamy D, Dowd DE, Ryan KC, Hugh-Jones P. Annual decline of lung function in pulmonary emphysema: influence of radiological distribution. Thorax. 1982; 37(1): 32-37. doi: http://dx.doi.org/10.1136/thx.37.1.32
93. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006; 1(3): 253-260. doi: http://dx.doi.org/10.2147/ciia.2006.1.3.253
94. Bosse R, Sparrow D, Rose CL, Weiss ST. Longitudinal effect of age and smoking cessation on pulmonary function. Am Rev Respir Dis. 1981; 123(4 Pt 1): 378-381.
95. Griffith KA, Sherrill DL, Siegel EM, Manolio TA, Bonekat HW, Enright PL. Predictors of loss of lung function in the elderly: the Cardiovascular Health Study. Am J Respir Crit Care Med. 2001; 163(1): 61-68. doi: http://dx.doi.org/10.1164/ajrccm.163.1.9906089
96. Kerstjens HA, Rijcken B, Schouten JP, Postma DS. Decline of FEV1 by age and smoking status: facts, figures, and fallacies. Thorax. 1997; 52(9): 820-827. doi: http://dx.doi.org/10.1136/thx.52.9.820
97. Wang ML, Avashia BH, Petsonk EL. Interpreting periodic lung function tests in individuals*: The relationship between 1- to 5-year and long-term fev1 changes. Chest. 2006; 130(2): 493-499. doi: http://dx.doi.org/10.1016/S0012-3692(15)51866-7
98. Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of Lung Health Study participants after 11 years. Am J Respir Crit Care Med. 2002; 166(5): 675-679. doi: http://dx.doi.org/10.1164/rccm.2112096
99.Petersen H, Sood A, Meek PM, et al. Rapid lung function decline in smokers is a risk factor for COPD and is attenuated by angiotensin-converting enzyme inhibitor use. Chest. 2014; 145(4): 695-703. doi: http://dx.doi.org/10.1378/chest.13-0799
100. Kohansal R, Martinez-Camblor P, Agustí A, Buist AS, Mannino DM, Soriano JB. The natural history of chronic airflow obstruction revisited. Am J Respir Crit Care Med. 2009; 180(1): 3-10. doi: http://dx.doi.org/10.1164/rccm.200901-0047OC
101. Lange P, Celli B, Agusti A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med. 2015; 373(2): 111-122. doi: http://dx.doi.org/10.1056/NEJMoa1411532
102. Lange P, Marott JL, Vestbo J. Natural history of development of airflow limitation. Eur Respir J. 2014; 44(Suppl 58).
103. Clark KD, Wardrobe-Wong N, Elliott JJ, Gill PT, Tait NP, Snashall PD. Patterns of lung disease in a "normal" smoking population*: Are emphysema and airflow obstruction found together? Chest. 2001; 120(3): 743-747. doi: http://dx.doi.org/10.1378/chest.120.3.743
104. Lutchmedial SM, Creed WG, Moore AJ, Walsh RR, Gentchos GE, Kaminsky DA. How common is airflow limitation in patients with emphysema on CT scan of the chest? Chest. 2015; 148(1): 176-184. doi: http://dx.doi.org/10.1378/chest.14-1556
105. Pipavath SN, Schmidt RA, Takasugi JE, Godwin JD. Chronic obstructive pulmonary disease: radiology-pathology correlation. J Thorac Imaging. 2009; 24(3): 171-180. doi: http://dx.doi.org/10.1097/RTI.0b013e3181b32676
106. Stewart JI, Criner GJ. The small airways in chronic obstructive pulmonary disease: pathology and effects on disease progression and survival. Curr Opin Pulm Med. 2013; 19(2): 109-115. doi: http://dx.doi.org/10.1097/MCP.0b013e32835ceefc
107. Fabbri LM, Boschetto P, Mapp CE. COPD Guidelines. Am J Respir Crit Care Med. 2007; 176(6): 527-528. doi: http://dx.doi.org/10.1164/rccm.200706-854ED
108. Hardie JA, Buist AS, Vollmer WM, Ellingsen I, Bakke PS, Morkve O. Risk of over-diagnosis of COPD in asymptomatic elderly never-smokers. Eur Respir J. 2002; 20(5): 1117-1122. doi: http://dx.doi.org/10.1183/09031936.02.00023202
109. Enright P, Brusasco V. Counterpoint: should we abandon FEV(1)/FVC < 0.70 to detect airway obstruction? Yes. Chest. 2010; 138(5): 1040-1042; discussion 2-4.
110. Celli BR, Halbert RJ. Point: should we abandon FEV(1)/FVC <0.70 to detect airway obstruction? No. Chest. 2010; 138(5): 1037-1040. doi: http://dx.doi.org/10.1378/chest.10-2049
111. Sorino C, Battaglia S, Scichilone N, et al. Diagnosis of airway obstruction in the elderly: contribution of the SARA study. Int J Chron Obstruct Pulmon Dis. 2012; 7: 389-395. doi: http://dx.doi.org/10.2147/COPD.S31630
112. Celli BR, Thomas NE, Anderson JA, et al. Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease: results from the TORCH study. Am J Respir Crit Care Med. 2008; 178(4): 332-338. doi: http://dx.doi.org/10.1164/rccm.200712-1869OC
113. Pauwels RA, Löfdahl C-G, Laitinen LA, et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking. N Engl J Med. 1999; 340(25): 1948-1953. doi: http://dx.doi.org/10.1056/NEJM199906243402503
114. Burge PS, Calverley PMA, Jones PW, Spencer S, Anderson JA, Maslen TK. Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ. 2000; 320(7245): 1297-1303. doi: http://dx.doi.org/10.1136/bmj.320.7245.1297
115. Thomsen LH, Dirksen A, Shaker SB, Skovgaard LT, Dahlback M, Pedersen JH. Analysis of FEV1 decline in relatively healthy heavy smokers: implications of expressing changes in FEV1 in relative terms. COPD. 2014; 11(1): 96-104. doi: http://dx.doi.org/10.3109/15412555.2013.830096
116. Vestbo J, Lange P. Natural history of COPD: Focusing on change in FEV1. Respirology. 2016; 21(1):34-43.
117. Peto R, Speizer FE, Cochrane AL, et al. The relevance in adults of air-flow obstruction, but not of mucus hypersecretion, to mortality from chronic lung disease. Results from 20 years of prospective observation. Am Rev Respir Dis. 1983; 128(3): 491-500 doi: http://dx.doi.org/10.1164/arrd.1983.128.3.491
118. Scanlon PD, Connett JE, Waller LA, et al. Smoking cessation and lung function in mild-to-moderate chronic obstructive pulmonary disease. The Lung Health Study. Am J Respir Crit Care Med. 2000; 161(2 Pt 1): 381-390. doi: http://dx.doi.org/10.1164/ajrccm.161.2.9901044
119. Willemse BW, Postma DS, Timens W, ten Hacken NH. The impact of smoking cessation on respiratory symptoms, lung function, airway hyperresponsiveness and inflammation. Eur Respir J. 2004; 23(3): 464-476. doi: http://dx.doi.org/10.1183/09031936.04.00012704
120. Brown CA, Crombie IK, Smith WC, Tunstall-Pedoe H. The impact of quitting smoking on symptoms of chronic bronchitis: results of the Scottish Heart Health Study. Thorax. 1991; 46(2): 112-116. doi: http://dx.doi.org/10.1136/thx.46.2.112
121. Lange P, Groth S, Nyboe G, et al. Effects of smoking and changes in smoking habits on the decline of FEV1. Eur Respir J. 1989; 2(9): 811-816.
122. Romieu I, Riojas-Rodriguez H, Marron-Mares AT, Schilmann A, Perez-Padilla R, Masera O. Improved biomass stove intervention in rural Mexico: impact on the respiratory health of women. Am J Respir Crit Care Med. 2009; 180(7): 649-656. doi: http://dx.doi.org/10.1164/rccm.200810-1556OC
123. Zhou Y, Zou Y, Li X, et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS Med. 2014; 11(3): e1001621. doi: http://dx.doi.org/10.1371/journal.pmed.1001621
124. US Preventive Services Task Force. Screening for chronic obstructive pulmonary disease using spirometry: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2008; 148(7): 529-534. doi: http://dx.doi.org/10.7326/0003-4819-148-7-200804010-00212
125. Lamprecht B, Soriano JB, Studnicka M, et al. Determinants of underdiagnosis of COPD in national and international surveys. Chest. 2015; 148(4): 971-985. doi: http://dx.doi.org/10.1378/chest.14-2535
126. Soriano JB, Price D. Screening and case findings. Controversies in COPD. ERS Monogr. 2015; 69: 1-25.
127. Celli BR, MacNee W. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 2004; 23(6): 932-946. doi: http://dx.doi.org/10.1183/09031936.04.00014304
128. Sims EJ, Price D. Spirometry: an essential tool for screening, case-finding, and diagnosis of COPD. Prim Care Respir J. 2012; 21(2): 128-130. doi: http://dx.doi.org/10.4104/pcrj.2012.00046