1. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132(4):661–680. doi: https://doi.org/10.1016/j.cell.2008.02.008
2. Gadue P, Huber T, Nostro M, Kattman S, Keller G. Germ layer induction from embryonic stem cells. Exp Hematol. 2005;33(9):955–964. doi: https://doi.org/10.1016/j.exphem.2005.06.009
3. Gouon-Evans V, Bousemant L, Gadue P, et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell-derived definitive endoderm. Nat Biotechnol. 2006;24:402–1411. doi: https://doi.org/10.1038/nbt1258
4. Si-Tayeb K, Noto FK, Nagaoka M, et al. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51(1):297–305. doi: https://doi.org/10.1002/hep.23354
5. Wilson AA, Ying L, Leisa M, et al. Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Reports. 2015;4(5):873–885. doi: https://doi.org/10.1016/j.stemcr.2015.02.021
6. Ogawa S, Surapisitchat J, Virtanen C, et al. Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development. 2013;140:3285–3296. doi: https://doi.org/10.1242/dev.090266
7. Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature. 1992;357:605–607. doi: https://doi.org/10.1038/357605a0
8. Lomas DA, Hurst JR, Gooptu B. Update on alpha-1 antitrypsin deficiency: New therapies. J Hepatol. 2016;65(2):413–424. doi: https://doi.org/10.1016/j.jhep.2016.03.010
9. Dickens JA, Ordóñez A, Chambers JE, et al. The endoplasmic reticulum remains functionally connected by vesicular transport after its fragmentation in cells expressing Z-α1-antitrypsin. FASEB J. 2016;30(12):4083-4097. doi: https://doi.org/10.1096/fj.201600430R
10. Perlmutter DH, Brodsky JL, Balistreri WF, Trapnell BC. Molecular pathogenesis of alpha-1-antitrypsin deficiency-associated liver disease: A meeting review. Hepatology. 2007;45(5):1313–1323. doi: https://doi.org/10.1002/hep.21628
11. Rudnick DA, Liao Y, Jae-Koo A, et al. Analyses of hepatocellular proliferation in a mouse model of alpha-1 antitrypsin deficiency. Hepatology. 2004; 39(4);1045-1055. doi: https://doi.org/10.1002/hep.20118
12. Brantly M, Nukiwa T, Crystal RG. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med. 1988;84(6):13–31. doi: https://doi.org/10.1016/S0002-9343(88)80066-4
13. Sifers RN. Intracellular processing of α1-antitrypsin. Proc Am Thorac Soc. 2010;7(6):376-380. doi: https://doi.org/10.1513/pats.201001-011AW
14. Sifers RN, Hardick CP, Woo SL. Disruption of the 290-342 salt bridge is not responsible for the secretory defect of the PiZ alpha 1-antitrypsin variant. J Biol Chem.1989;264:2997–3001.
15. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science. 1999;286(5446):1882–1888. doi: https://doi.org/10.1126/science.286.5446.1882
16. Plemper RK, Wolf DH. Endoplasmic reticulum degradation. Reverse protein transport and its end in the proteasome. Mol Biol Rep. 1999;26(1-2):125–130. doi: https://doi.org/10.1023/A:1006913215484
17. McCarthy C, Saldova R, O'Brien ME, et al. Increased outer arm and core fucose residues on the N-glycans of mutated alpha-1 antitrypsin protein from alpha-1 antitrypsin deficient individuals. J Proteome Res. 2014;13(2):596–605. doi: https://doi.org/10.1021/pr400752t
18. Hidvegi T, Schmidt BZ, Hale P, Perlmutter DH. Accumulation of mutant alpha-1 antitrypsin Z in the endoplasmic reticulum activates caspases-4 and -12, NFkB, and BAP31 but not the unfolded protein response. J Biol Chem. 2005;280:39002–39015. doi: https://doi.org/10.1074/jbc.M508652200
19. Graham KS, Le A, Sifers RN. Accumulation of the insoluble PiZ variant of human alpha-1 antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J Biol Chem. 1990; 265:20463–20468.
20. Wu Y, Whitman J, Molmenti E, Moore K, Hippenmeyer P, Perlmutter DH. A lag in intracellular degradation of mutant alpha-1 antitrypsin correlates with the liver disease phenotype in homozygous PiZZ alpha-1 antitrypsin deficiency. PNAS. 1994;91(19):9014–9018. doi: https://doi.org/10.1073/pnas.91.19.9014
21. Choi AMK, Ryter SW, Levine B. Autophagy in human health and disease. New Eng J Med. 2013;368:651–662. doi: https://doi.org/10.1056/NEJMra1205406
22. Klionsky DJ, Abdalla FC, Abeliovich H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy. 2012;8(4):445–544. doi: https://doi.org/10.4161/auto.19496
23. Teckman JH, Perlmutter DH. Retention of mutant alpha(1)-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol. 2000;279(5):G961–G974. doi: https://doi.org/10.1152/ajpgi.2000.279.5.G961
24. An J-K, Blomenkamp K, Lindblad D, Teckman JH. Quantitative isolation of α1AT mutant Z protein polymers from human and mouse livers and the effect of heat. Hepatology. 2005;41(1):160–167. doi: https://doi.org/10.1002/hep.20508
25. Teckman JH. Mitochondrial autophagy and injury in the liver in α1-antitrypsin deficiency. Am J Physiol Gastrointest Liver Physiol. 2004;286(5):G851–G862. doi: https://doi.org/10.1152/ajpgi.00175.2003
26. Granell S, Baldini G. Inclusion bodies and autophagosomes: are ER-derived protective organelles different than classical autophagosomes? Autophagy. 2008;4(3):375–377.
27. Teckman JH, An J-K, Loethen S, Perlmutter DH. Fasting in alpha-1 antitrypsin deficient liver: constitutive activation of autophagy. Am J Physiol Gastrointest Liver Physiol. 2002;283(5):G1156–G1165. doi: https://doi.org/10.1152/ajpgi.00041.2002
28. Lawless MW, Greene CM, Mulgrew A, Taggert CC, O’Neil SJ, McElvaney NG. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z α-1-antitrypsin deficiency. J Immunol. 2004;172(9):5722–5726. doi: https://doi.org/10.4049/jimmunol.172.9.5722
29. Xu C. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 2005;115:2656–2664. doi: https://doi.org/10.1172/JCI26373
30. Rashid ST, Corbineau S, Hannan N, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120:3127–3136. doi: https://doi.org/10.1172/JCI43122
31. Tafaleng EN, Chakraborty S, Han B, et al. Induced pluripotent stem cells model personalized variations in liver disease resulting from. Hepatology. 2015;62(1):147-157. doi: https://doi.org/10.1002/hep.27753/suppinfo
32. Choi SM, Kim Y, Shim JS, et al. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology. 2013;57(6):2458–2468. doi: https://doi.org/10.1002/hep.26237
33. Caro LG, Palade GE. Protein synthesis, storage and discharge in the pancreatic exocrine cell. An autoradiographic study. J Cell Biol. 1964;20(3):473–495. doi: https://doi.org/10.1083/jcb.20.3.473
34. Hidvegi T, Ewing M, Hale P, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1 antitrypsin z and reduces hepatic fibrosis. Science. 2010;329(5988):229–232. doi:https://doi.org/10.1126/science.1190354
35. Hitomi J, Katayama T, Eguchi Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Aβ-induced cell death. J Cell Biol. 2004;165(3):347–356. doi: https://doi.org/10.1083/jcb.200310015
36. Gebhardt R, Matz-Soja M. Liver zonation: Novel aspects of its regulation and its impact on homeostasis. World J Gastroenteral. 2014;20(26):8491–8415. doi: https://doi.org/10.3748/wjg.v20.i26.8491
37. Halpern KB, Shenhav R, Matcovitch-Natan O, et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature. 2017;542:352–356. doi: https://doi.org/10.1038/nature21065
38. Piccolo P, Amunziata P, Soria LR, et al. Down-regulation of hepatocyte nuclear factor-4α and defective zonation in livers expressing mutant Z α1-antitrypsin. Hepatology. 2017;66(1):124-135. doi: https://doi.org/10.1002/hep.29160
39. Neofytou E, O'Brien CG, Couture LA, Wu JC. Hurdles to clinical translation of human induced pluripotent stem cells. J Clin Invest.2015;125:2551–2557. doi: https://doi.org/10.1172/JCI80575
40. Ordó-ez A, Snapp EL, Tan L, Miranda E, Marciniak SJ, Lomas DA. Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in alpha 1-antitrypsin deficiency. Hepatology. 2013;57(5):2049–2060. doi: https://doi.org/10.1002/hep.26173
41. Cayo MA, Mallanna Sk, Di Furio F, et al. A drug screen using human iPSC-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia. Cell Stem Cell. 2017;20(4):478-489.e5.
42. Mandai M, Watanabe A, Kurimaoto Y, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. New Eng J Med. 2017;376:1038–1046. doi: https://doi.org/10.1056/NEJMoa1608368
43. Borel F, Tang Q, Gernoux G, et al. Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of alpha-1 antitrypsin deficiency. Molecular Therapy. 2017;25(11):2477-2489. doi: https://doi.org/10.1016/j.ymthe.2017.09.020