1. Collaborators GBDCRD. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the global burden of disease study 2015. Lancet. 2017;5(9):691-706. doi: https://doi.org/10.1016/S2213-2600(17)30293-X
2. Buvelot H, Posfay-Barbe KM, Linder P, Schrenzel J, Krause KH. Staphylococcus aureus, phagocyte NADPH oxidase and chronic granulomatous disease. FEMS Microbiol Rev. 2017;41:139-157.
3. Fernandez-Boyanapalli RF, Falcone EL, Zerbe CS, et al. Impaired efferocytosis in human chronic granulomatous disease is reversed by pioglitazone treatment. J Allergy Clin Immunol. 2015;136(5):1399-1401. doi: https://doi.org/10.1016/j.jaci.2015.07.034
4. Kim EH, Surh YJ. 15-deoxy-delta12,14-prostaglandin j2 as a potential endogenous regulator of redox-sensitive transcription factors. Biochem Pharmacol. 2006;72(11):1516-1528. doi: https://doi.org/10.1016/j.bcp.2006.07.030
5. Zhao H, Eguchi S, Alam A, Ma D. The role of nuclear factor-erythroid 2 related factor 2 (NRF-2) in the protection against lung injury. Am J Physiol Lung Cell Mol Physiol. 2017;312(2):L155-L162. doi: https://doi.org/10.1152/ajplung.00449.2016
6. Kuijpers T, Lutter R. Inflammation and repeated infections in CGD: two sides of a coin. Cell Mol Life Sci. 2012;69(1):7-15. doi: https://doi.org/10.1007/s00018-011-0834-z
7. Segal BH, Han W, Bushey JJ, et al. Nadph oxidase limits innate immune responses in the lungs in mice. PLoS One. 2010;5:e9631. doi: https://doi.org/10.1371/journal.pone.0009631
8. Pryor WA, Prier DG, Church DF. Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect. 1983;47:345-355. doi: https://doi.org/10.1289/ehp.8347345
9. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993;686:12-27.
10. Thompson AB, Bohling T, Heires A, Linder J, Rennard SI. Lower respiratory tract iron burden is increased in association with cigarette smoking. J Lab Clin Med. 1991;117:493-499.
11. Moreno JJ, Foroozesh M, Church DF, Pryor WA. Release of iron from ferritin by aqueous extracts of cigarette smoke. Chem Res Toxicol. 1992;5(1):116-123. doi: https://doi.org/10.1021/tx00025a020
12. Pryor WA, Dooley MM, Church DF. Human alpha-1-proteinase inhibitor is inactivated by exposure to sidestream cigarette smoke. Toxicol Lett. 1985;28(1):65-70. doi: https://doi.org/10.1016/0378-4274(85)90010-4
13. Borish ET, Cosgrove JP, Church DF, Deutsch WA, Pryor WA. Cigarette tar causes single-strand breaks in DNA. Biochem Biophys Res Commun. 1985;133(2):780-786. doi: https://doi.org/10.1016/0006-291X(85)90972-6
14. Hoidal JR, Fox RB, LeMarbe PA, Perri R, Repine JE. Altered oxidative metabolic responses in vitro of alveolar macrophages from asymptomatic cigarette smokers. Am Rev Respir Dis. 1981;123(1):85-89.
15. Hubbard RC, Ogushi F, Fells GA, et al. Oxidants spontaneously released by alveolar macrophages of cigarette smokers can inactivate the active site of alpha 1-antitrypsin, rendering it ineffective as an inhibitor of neutrophil elastase. J Clin Invest. 1987;80:1289-1295. doi: https://doi.org/10.1172/JCI113204
16. Nauseef WM, Metcalf JA, Root RK. Role of myeloperoxidase in the respiratory burst of human neutrophils. Blood. 1983;61(3):483-492.
17. Cross CE, Halliwell B, Allen A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet. 1984;323(8390):1328-1330. doi: https://doi.org/10.1016/S0140-6736(84)91822-1
18. Adler KB, Li Y. Airway epithelium and mucus: intracellular signaling pathways for gene expression and secretion. Am J Respir Cell Mol Biol. 2001;25(4):397-400. doi: https://doi.org/10.1165/ajrcmb.25.4.f214
19. Cantin AM, North SL, Hubbard RC, Crystal RG. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol. 1987;63(1):152-157. doi: https://doi.org/10.1152/jappl.1987.63.1.152
20. Cantin AM, Bilodeau G, Ouellet C, Liao J, Hanrahan JW. Oxidant stress suppresses CFTR expression. Am J Physiol Cell Physiol. 2006;290(1):C262-270. doi: https://doi.org/10.1152/ajpcell.00070.2005
21. Rab A, Rowe SM, Raju SV, Bebok Z, Matalon S, Collawn JF. Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol. 2013;305(8):L530-541. doi:https://doi.org/10.1152/ajplung.00039.2013
22. Malerba M, Clini E, Cremona G, et al. Exhaled nitric oxide in patients with PIZZ phenotype-related alpha1-anti-trypsin deficiency. Respir Med. 2001;95:520-525. doi: https://doi.org/10.1053/rmed.2001.1082
23. Alam S, Li Z, Janciauskiene S, Mahadeva R. Oxidation of Z alpha1-antitrypsin by cigarette smoke induces polymerization: a novel mechanism of early-onset emphysema. Am J Respir Cell Mol Biol. 2011;45(2):261-269. doi: https://doi.org/10.1165/rcmb.2010-0328OC
24. Escribano A, Amor M, Pastor S, et al. Decreased glutathione and low catalase activity contribute to oxidative stress in children with alpha-1 antitrypsin deficiency. Thorax. 2015;70(1):82-83. doi: https://doi.org/10.1136/thoraxjnl-2014-205898
25. Chan ED, Pott GB, Silkoff PE, Ralston AH, Bryan CL, Shapiro L. Alpha-1-antitrypsin inhibits nitric oxide production. J Leukoc Biol. 2012;92(6):1251-1260. doi: https://doi.org/10.1189/jlb.0212071
26. Rushworth GF, Megson IL. Existing and potential therapeutic uses for n-acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141(2):150-159. doi: https://doi.org/10.1016/j.pharmthera.2013.09.006
27. Dano G. Bronchospasm caused by acetylcysteine in children with bronchial asthma. Acta Allergol. 1971;26(3):181-190. doi: https://doi.org/10.1111/j.1398-9995.1971.tb01294.x
28. Stey C, Steurer J, Bachmann S, Medici TC, Tramer MR. The effect of oral n-acetylcysteine in chronic bronchitis: a quantitative systematic review. Eur Respir J. 2000;16(2):253-262. doi: https://doi.org/10.1034/j.1399-3003.2000.16b12.x
29. Decramer M, Dekhuijzen PN, Troosters T, et al. The bronchitis randomized on NAC cost-utility study (BRONCUS): hypothesis and design. Eur Respir J. 2001;17(3):329-336. doi: https://doi.org/10.1183/09031936.01.17303290
30. Tse HN, Raiteri L, Wong KY, et al. High-dose n-acetylcysteine in stable COPD: the 1-year, double-blind, randomized, placebo-controlled HIACE study. Chest. 2013;144(1):106-118. doi: https://doi.org/10.1378/chest.12-2357
31. Zheng JP, Wen FQ, Bai CX, et al; PANTHEON Study Group. Twice daily n-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2014;2(3):187-194. doi: https://doi.org/10.1016/S2213-2600(13)70286-8
32. Cazzola M, Calzetta L, Page C, et al. Influence of n-acetylcysteine on chronic bronchitis or COPD exacerbations: a meta-analysis. Eur Respir Rev. 2015;24(137):451-461. doi: https://doi.org/10.1183/16000617.00002215
33. Fowdar K, Chen H, He Z, et al. The effect of n-acetylcysteine on exacerbations of chronic obstructive pulmonary disease: a meta-analysis and systematic review. Heart Lung. 2017;46(2):120-128. doi: https://doi.org/10.1016/j.hrtlng.2016.12.004
34. Sanguinetti CM. N-acetylcysteine in COPD: why, how, and when? Multidiscipl Respir Med. 2015;11:8. doi: https://doi.org/10.1186/s40248-016-0039-2
35. Poole P, Chong J, Cates CJ. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015:CD001287.
36. Gillissen A, Jaworska M, Orth M, et al. Nacystelyn, a novel lysine salt of n-acetylcysteine, to augment cellular antioxidant defence in vitro. Respir Med. 1997;91:159-168. doi: https://doi.org/10.1016/S0954-6111(97)90052-4
37. Ekberg-Jansson A, Larson M, MacNee W, et al. N-isobutyrylcysteine, a donor of systemic thiols, does not reduce the exacerbation rate in chronic bronchitis. Eur Respir J. 1999;13(4):829-834. doi: https://doi.org/10.1034/j.1399-3003.1999.13d22.x
38. Allegra L, Cordaro CI, Grassi C. Prevention of acute exacerbations of chronic obstructive bronchitis with carbocysteine lysine salt monohydrate: a multicenter, double-blind, placebo-controlled trial. Respiration. 1996;63:174-180. doi: https://doi.org/10.1159/000196540
39. Tatsumi K, Fukuchi Y;PEACE Study Group. Carbocisteine improves quality of life in patients with chronic obstructive pulmonary disease. J Am Geriatr Soc. 2007;55(11):1884-1886. doi: https://doi.org/10.1111/j.1532-5415.2007.01373.x
40. Yasuda H, Yamaya M, Sasaki T, et al. Carbocisteine reduces frequency of common colds and exacerbations in patients with chronic obstructive pulmonary disease. J Am Geriatr Soc. 2006;54(2):378-380. doi: https://doi.org/10.1111/j.1532-5415.2005.00592_9.x
41. Zheng JP, Kang J, Huang SG, et al. Effect of carbocisteine on acute exacerbation of chronic obstructive pulmonary disease (PEACE study): a randomised placebo-controlled study. Lancet. 2008;371(9629):2013-2018. doi: https://doi.org/10.1016/S0140-6736(08)60869-7
42. Esposito A, Valentino MR, Bruzzese D, et al. Effect of carbocisteine in prevention of exacerbation of chronic obstructive pulmonary disease (CAPRI study): an observational study. Pulm Pharmacol Ther. 2016;37:85-88. doi: https://doi.org/10.1016/j.pupt.2016.03.003
43. Zeng Z, Yang D, Huang X, Xiao Z. Effect of carbocisteine on patients with COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2017;12:2277-2283. doi: https://doi.org/10.2147/COPD.S140603
44. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Am J Respir Crit Care Med. 2017;195(5):557-582. doi: https://doi.org/10.1164/rccm.201701-0218PP
45. Moretti M, Bottrighi P, Dallari R, et al; EQUALIFE Study Group. The effect of long-term treatment with erdosteine on chronic obstructive pulmonary disease: The EQUALIFE study. Drugs Exp Clin Res. 2004;30(4):143-152.
46. Cazzola M, Floriani I, Page CP. The therapeutic efficacy of erdosteine in the treatment of chronic obstructive bronchitis: a meta-analysis of individual patient data. Pulm Pharmacol Ther. 2010;23(2):135-144. doi: https://doi.org/10.1016/j.pupt.2009.10.002
47. Dal Negro RW, Visconti M, Turco P. Efficacy of erdosteine 900 versus 600 mg/day in reducing oxidative stress in patients with copd exacerbations: results of a double blind, placebo-controlled trial. Pulm Pharmacol Ther. 2015;33:47-51. doi: https://doi.org/10.1016/j.pupt.2015.06.004
48. Dal Negro RW, Wedzicha JA, Iversen M, et al; RESTORE Group. Effect of erdosteine on the rate and duration of copd exacerbations: The RESTORE study. Eur Respir J. 2017;50(4). doi: https://doi.org/10.1183/13993003.00711-2017
49. Rhee CK, Kang CM, You MB, et al. Effect of fudosteine on mucin production. Eur Respir J. 2008;32(5):1195-1202. doi: https://doi.org/10.1183/09031936.00018508
50. Takahashi K, Mizuno H, Ohno H, et al. Effects of ss320a, a new cysteine derivative, on the change in the number of goblet cells induced by isoproterenol in rat tracheal epithelium. Jpn J Pharmacol. 1998;77(1):71-77. doi: https://doi.org/10.1254/jjp.77.71
51. Rahman I. Pharmacological antioxidant strategies as therapeutic interventions for COPD. Biochim Biophys Acta. 2012;1822(5):714-728. doi: https://doi.org/10.1016/j.bbadis.2011.11.004
52. Hodge S, Matthews G, Mukaro V, et al. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am J Respir Cell Mol Biol. 2011;44(5):673-681. doi: https://doi.org/10.1165/rcmb.2009-0459OC
53. Xu J, Li T, Wu H, Xu T. Role of thioredoxin in lung disease. Pulm Pharmacol Ther. 2012;25(2):154-162. doi: https://doi.org/10.1016/j.pupt.2012.01.002
54. Tanabe N, Hoshino Y, Marumo S, et al. Thioredoxin-1 protects against neutrophilic inflammation and emphysema progression in a mouse model of chronic obstructive pulmonary disease exacerbation. PLoS One. 2013;8:e79016. doi: https://doi.org/10.1371/journal.pone.0079016
55. Iizuka T, Ishii Y, Itoh K, et al. NRF2-deficient mice are highly susceptible to cigarette smoke-induced emphysema. Genes Cells. 2005;10(12):1113-1125. doi: https://doi.org/10.1111/j.1365-2443.2005.00905.x
56. Greene CM, Chhabra R, McElvaney NG. Is there a therapeutic role for selenium in alpha-1 antitrypsin deficiency? Nutrients. 2013;5(3):758-770. doi: https://doi.org/10.3390/nu5030758
57. Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Selenoprotein s/seps1 modifies endoplasmic reticulum stress in z variant alpha1-antitrypsin deficiency. J Biol Chem. 2009;284:16891-16897. doi: https://doi.org/10.1074/jbc.M109.006288
58. Vunta H, Davis F, Palempalli UD, et al. The anti-inflammatory effects of selenium are mediated through 15-deoxy-delta12,14-prostaglandin j2 in macrophages. J Biol Chem. 2007;282:17964-17973. doi: https://doi.org/10.1074/jbc.M703075200
59. Sussan TE, Rangasamy T, Blake DJ, et al. Targeting NRF2 with the triterpenoid cddo-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci USA. 2009;106:250-255. doi: https://doi.org/10.1073/pnas.0804333106
60. Wise RA, Holbrook JT, Criner G, et al; Broccoli Sprout Extract Trial Research Group. Lack of effect of oral sulforaphane administration on NRF2 expression in COPD: a randomized, double-blind, placebo-controlled trial. PLoS One. 2016;1:e0163716. doi: https://doi.org/10.1371/journal.pone.0163716
61. Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3beta-NRF2 signal axis. Redox Biol. 2017;12:311-324. doi: https://doi.org/10.1016/j.redox.2017.03.001
62. Traboulsi H, Cloutier A, Boyapelly K, et al. The flavonoid isoliquiritigenin reduces lung inflammation and mouse morbidity during influenza virus infection. Antimicrob Agents Chemother. 2015;59:6317-6327. doi: https://doi.org/10.1128/AAC.01098-15
63. Tuder RM, Zhen L, Cho CY, et al. Oxidative stress and apoptosis interact and cause emphysema due to vascular endothelial growth factor receptor blockade. Am J Respir Cell Mol Biol. 2003;29(1):88-97. doi: https://doi.org/10.1165/rcmb.2002-0228OC
64. Chang LY, Crapo JD. Inhibition of airway inflammation and hyperreactivity by an antioxidant mimetic. Free Radic Biol Med. 2002;33(3):379-386. doi: https://doi.org/10.1016/S0891-5849(02)00919-X
65. Smith KR, Uyeminami DL, Kodavanti UP, Crapo JD, Chang LY, Pinkerton KE. Inhibition of tobacco smoke-induced lung inflammation by a catalytic antioxidant. Free Radic Biol Med. 2002;33(8):1106-1114. doi: https://doi.org/10.1016/S0891-5849(02)01003-1
66. Duong C, Seow HJ, Bozinovski S, Crack PJ, Anderson GP, Vlahos R. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2010;299(3):L425-433. doi: https://doi.org/10.1152/ajplung.00038.2010
67. Kluchova Z, Petrasova D, Joppa P, Dorkova Z, Tkacova R. The association between oxidative stress and obstructive lung impairment in patients with COPD. Physiol Res. 2007;56:51-56.
68. Santos MC, Oliveira AL, Viegas-Crespo AM, et al. Systemic markers of the redox balance in chronic obstructive pulmonary disease. Biomarkers. 2004;9(6):461-469. doi: https://doi.org/10.1080/13547500400024768
69. Oostwoud LC, Gunasinghe P, Seow HJ, et al. Apocynin and ebselen reduce influenza a virus-induced lung inflammation in cigarette smoke-exposed mice. Sci Rep. 2016;6:20983. doi: https://doi.org/10.1038/srep20983
70. Zhang M, Nomura A, Uchida Y, et al. Ebselen suppresses late airway responses and airway inflammation in guinea pigs. Free Radic Biol Med. 2002;32(5):454-464. doi: https://doi.org/10.1016/S0891-5849(01)00825-5
71. Haddad el B, McCluskie K, Birrell MA, et al. Differential effects of ebselen on neutrophil recruitment, chemokine, and inflammatory mediator expression in a rat model of lipopolysaccharide-induced pulmonary inflammation. J Immunol. 2002;169(2):974-982. doi: https://doi.org/10.4049/jimmunol.169.2.974
72. Ohsawa I, Ishikawa M, Takahashi K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13:688-694. doi: https://doi.org/10.1038/nm1577
73. Ohta S. Molecular hydrogen as a preventive and therapeutic medical gas: Initiation, development and potential of hydrogen medicine. Pharmacol Ther. 2014;144(1):1-11. doi: https://doi.org/10.1016/j.pharmthera.2014.04.006
74. Suzuki Y, Sato T, Sugimoto M, et al. Hydrogen-rich pure water prevents cigarette smoke-induced pulmonary emphysema in SMP30 knockout mice. Biochem Biophys Res Commun. 2017;492(1):74-81. doi: https://doi.org/10.1016/j.bbrc.2017.08.035
75. Seo WY, Goh AR, Ju SM, et al. Celastrol induces expression of heme oxygenase-1 through ROS/NRF2/are signaling in the HACAT cells. Biochem Biophys Res Commun. 2011;407(3):535-540. doi: https://doi.org/10.1016/j.bbrc.2011.03.053
76. Jaquet V, Marcoux J, Forest E, et al. Nadph oxidase (NOX) isoforms are inhibited by celastrol with a dual mode of action. Br J Pharmacol. 2011;164(2b):507-520. doi: https://doi.org/10.1111/j.1476-5381.2011.01439.x
77. Hoidal JR, Fox RB, LeMarbe PA, Perri R, Repine JE. Altered oxidative metabolic responses in vitro of alveolar macrophages from asymptomatic cigarette smokers. Am Rev Respir Dis. 1981;123:85-89.
78. Tollefson AK, Oberley-Deegan RE, Butterfield KT, et al. Endogenous enzymes (NOX and ECSOD) regulate smoke-induced oxidative stress. Free Radic Biol Med. 2010;49(12):1937-1946. doi: https://doi.org/10.1016/j.freeradbiomed.2010.09.022
79. Schultz J, Kaminker K. Myeloperoxidase of the leucocyte of normal human blood. I. Content and localization. Arch Biochem Biophys. 1962;96(3):465-467. doi: https://doi.org/10.1016/0003-9861(62)90321-1
80. Kutter D, Devaquet P, Vanderstocken G, Paulus JM, Marchal V, Gothot A. Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit ? Acta Haematol. 2000;104(1):10-15. doi: https://doi.org/10.1159/000041062
81. Churg A, Marshall CV, Sin DD, et al. Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(1):34-43. doi: https://doi.org/10.1164/rccm.201103-0468OC
82. Biswas S, Hwang JW, Kirkham PA, Rahman I. Pharmacological and dietary antioxidant therapies for chronic obstructive pulmonary disease. Curr Med Chem. 2013;20(12):1496-1530. doi: https://doi.org/10.2174/0929867311320120004
83. Kaluza J, Larsson SC, Orsini N, Linden A, Wolk A. Fruit and vegetable consumption and risk of VOPD: a prospective cohort study of men. Thorax. 2017;72(6):500-509. doi: https://doi.org/10.1136/thoraxjnl-2015-207851
84. Wedzicha JA, Calverley PMA, Albert RK, et al. Prevention of COPD exacerbations: a European Respiratory Society/American Thoracic Society guideline. Eur Respir J. 2017;50(3). doi: https://doi.org/10.1183/13993003.02265-2016
85. Criner GJ, Bourbeau J, Diekemper RL, et al. Executive summary: prevention of acute exacerbation of COPD: American College of Chest Physicians and Canadian Thoracic Society guideline. Chest. 2015;147(4):894-942. doi: https://doi.org/10.1378/chest.14-1676