1. Laurell C-B, Eriksson S. The electrophoretic alpha-1-globulin pattern of serum in alpha-1-antitrypsin deficiency. Scand J Clin Lab Invest. 1963;15(2):132-140. doi: https://doi.org/10.3109/00365516309051324
2. Gross P, Babyak MA, Tolker E, Kaschak M. Enzymatically produced pulmonary emphysema; A preliminary report. J Occup Med. 1964;6:481-484.
3. Cepinskas G1, Sandig M, Kvietys PR. PAF-induced elastase-dependent neutrophil transendothelial migration is associated with the mobilization of elastase to the neutrophil surface and localization to the migrating front. J Cell Sci. 1999;112:1937-1945.
4. Damiano VV, Tsang A, Kucich U, et al. Immunolocalization of elastase in human emphysematous lungs. J Clin Invest. 1986;78(2):482-493. doi: https://doi.org/10.1172/JCI112600
5. Sapey E, Stockley JA, Greenwood H, et al. Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(9):1176-1186. doi: https://doi.org/10.1164/rccm.201008-1285OC
6. Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125-1132. doi: https://doi.org/10.1164/rccm.201201-0051OC
7. Ostridge K, Williams N, Kim V, et al. Relationship between pulmonary matrix metalloproteinases and quantitative CT markers of small airways disease and emphysema in COPD. Thorax. 2016;71(2):126-132. doi: https://doi.org/10.1136/thoraxjnl-2015-207428
8. Lo CY, Huang HY, He JR, et al. Increased matrix metalloproteinase-9 to tissue inhibitor of metalloproteinase-1 ratio in smokers with airway hyperresponsiveness and accelerated lung function decline. Int J Chron Obstruct Pulmon Dis. 2018;13:1135-1144. doi: https://doi.org/10.2147/COPD.S161257
9. Lesser M, Padilla ML, Cardozo C. Induction of emphysema in hamsters by intratracheal instillation of cathepsin B. Am Rev Respir Dis. 1992;145(3):661-668. doi: https://doi.org/10.1164/ajrccm/145.3.661
10. Burnett D, Crocker J, Stockley RA. Cathepsin B-like cysteine proteinase activity in sputum and immunohistologic identification of cathepsin B in alveolar macrophages. Am Rev Respir Dis. 1983;128(5):915-919.
11. Kuhn C, Yu SY, Chraplyvy M, Linder HE, Senior RM. The induction of emphysema with elastase. II. Changes in connective tissue. Lab Invest. 1976;34372-34380.
12. Kuhn C, Starcher B. The effect of lathyrogens on the evolution of elastase-induced emphysema. Am Rev Respir Dis. 1980;122:453-460.
13. Niewoehner DE, Hoidal JR: Lung fibrosis or emphysema: Divergent responses to a common injury. Science. 1982;217(4557):359-360. doi: https://doi.org/10.1126/science.7089570
14. Turner-Stokes L, Turton C, Pope FM, Green M. Emphysema and cutis laxa. Thorax. 1983;38:790-795. doi: https://doi.org/10.1136/thx.38.10.790
15. Walsh TA, Gopagondanahalli KR, Malhotra A. Williams-Beuren syndrome and congenital lobar emphysema: uncommon association with common pathology? Case Rep Pediatr. 2017:3480980. doi: https://doi.org/10.1155/2017/3480980
16. Kucich U, Christner P, Lippmann M, Fein A, Goldberg A, Kimbel P, Weinbaum G, Rosenbloom J. Immunologic measurement of elastin-derived peptides in human serum. Am Rev Respir Dis. 1983;127(2):S28-30.
17. Kuhn C III, Starcher BC. The effect of lathyrogens on the evolution of elastase-induced emphysema. Am Rev Respir Dis. 1980;122(3):453-460.
18. Churg A, Zay K, Shay S, et al. Acute cigarette smoke-induced connective tissue breakdown requires both neutrophils and macrophage metalloelastase in mice. Am J Respir Cell Mol Biol. 2002;27(3):368-374. doi: https://doi.org/10.1165/rcmb.4791
19. Stockley RA. Alpha- 1 antitrypsin review. Clin Chest Med. 2014;35(1):39-50. doi: https://doi.org/10.1016/j.ccm.2013.10.001
20. Morrison HM, Welgus HG, Stockley RA, Burnett D, Campbell EJ. Inhibition of human leukocyte elastase bound to elastin: relative ineffectiveness and two mechanisms of inhibitory activity. Am J Respir Cell Mol Biol. 1990;2(3):263-269. doi: https://doi.org/10.1165/ajrcmb/2.3.263
21. Liou TG, Campbell EJ. Quantum proteolysis resulting from release of single granules by neutrophils: a novel, non-oxidative mechanism of extracellular proteolytic activity. J Immunol. 1996;157:2624-2631.
22. Campbell EJ, Campbell MA, Boukedes SS, Owen CA. Quantum proteolysis by neutrophils: implications for pulmonary emphysema in alpha-1 antitrypsin deficiency. J Clin Invest. 1999;104(3):337-344. doi: https://doi.org/10.1172/JCI6092
23. Hill AT, Campbell EJ, Bayley DL, Hill SL, Stockley RA. Evidence for excessive bronchial inflammation during an acute exacerbation of chronic obstructive pulmonary disease in patients with alpha (1)-antitrypsin deficiency (PiZ). Am J Respir Crit Care Med. 1999;160(6):1968-1975. doi: https://doi.org/10.1164/ajrccm.160.6.9904097
24. Gadek JE, Klein HK, Holland PV, Crystal RG. Replacement therapy of alpha-1 antitrypsin deficiency. Reversal of protease-antiprotease imbalance within the alveolar structures of PiZ subjects. J Clin Invest. 1981;68(5):1158-1165. doi: https://doi.org/10.1172/JCI110360
25. Dirksen A, Dijkman JH, Madsen F, et al. A randomized clinical trial of alpha- 1 antitrypsin augmentation therapy. Am J Respir Crit Care Med. 1999;160(5):1468-1472. doi: https://doi.org/10.1164/ajrccm.160.5.9901055
26. Dirksen A, Piitulainen E, Parr DG, et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha-1 antitrypsin deficiency. Eur Respir J. 2009;33(6):1345-1353. doi: https://doi.org/10.1183/09031936.00159408
27. Chapman KR, Burdon JG, Piitulainen E, et al. Intravenous augmentation treatment and lung density in severe alpha-1 antitrypsin deficiency (RAPID): a randomised, double-blind placebo-controlled trial. Lancet. 2015;386(9991):360-368. doi: https://doi.org/10.1016/S0140-6736(15)60860-1
28. Kao RC, Wehner NG, Skubitz KM, et al. Proteinase 3. A distinct human polymorphonuclear leukocyte proteinase that produces emphysema in hamsters. J Clin Invest. 1988;82(6):1963-1973. doi: https://doi.org/10.1172/JCI113816
29. Owen CA. Leukocyte cell surface proteinases: regulation of expression, functions, and mechanisms of surface localization. Int J Biochem Cell Biol. 2008;40(6-7):1246-1272. doi: https://doi.org/10.1016/j.biocel.2008.01.020
30. Campbell EJ, Campbell MA, Owen CA. Bioactive proteinase 3 on the cell surface of human neutrophils: quantification, catalytic activity, and susceptibility to inhibition. J Immunol. 2000;165(6):3366-3374. doi: https://doi.org/10.4049/jimmunol.165.6.3366
31. Sinden NJ, Baker MJ, Smith DJ, et al. α-1-antitrypsin variants and the proteinase/antiproteinase imbalance in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;308(2):L179-90. doi: https://doi.org/10.1152/ajplung.00179.2014
32. Sinden NJ, Stockley RA. Proteinase 3 activity in sputum from subjects with alpha-1-antitrypsin deficiency and COPD. Eur Respir J. 2013;41(5):1042-1050. doi: https://doi.org/10.1183/09031936.00089712
33. Sullivan AL, Stockley RA. Proteinases and COPD. In: Chronic Obstructive Pulmonary Disease. Blackwell Publishing Ltd; 2007:349-366. doi: https://doi.org/10.1002/9780470755976.ch31
34. Granelli-Peperno A, Vassalli J-D, Reich E. Secretion of plasminogen activator by human polymorphonuclear leukocytes. J Exp Med. 1977;146(6):1693-1706. doi: https://doi.org/10.1084/jem.146.6.1693
35. Vassalli J-D, Sappino AP, Belin D. The plasminogen activator/plasmin system. J Clin Invest. 1991;88(4):1067-1072. doi: https://doi.org/10.1172/JCI115405
36. Saksela O, Rifkin DB. Cell-associated plasminogen activation: Regulation and physiological functions. Ann Rev Cell Biol. 1988;4:93-126. doi: https://doi.org/10.1146/annurev.cb.04.110188.000521
37. Taipale J, Koli K, Keski-Oja J. Release of transforming growth factorbeta1 from the pericellular matrix of cultured fibroblasts and fibrosarcoma cells by plasmin and thrombin. J Biol Chem. 1992;26735:25378-25384.
38. Raza SL, Nehring LC, Shapiro SD, et al. Proteinase activated receptor-1 regulation of macrophage elastase secretion by serine proteinases. J Biol Chem. 2000;52:41243-41250. doi: https://doi.org/10.1074/jbc.M005788200
39. Churg A, Wang R, Wang X, et al. Effect of an MMP-9/MMP-12 inhibitor on smoke-induced emphysema and airway remodelling in guinea pigs. Thorax. 2007;628:706-713. doi: https://doi.org/10.1136/thx.2006.068353
40. Murphy G, Stanton H, Cowell S, et al. Mechanisms for pro matrix metalloproteinase activation. APMIS. 1999;107(1-6):38-44. doi: https://doi.org/10.1111/j.1699-0463.1999.tb01524.x
41. Fu X, Kassim SY, Parks WC, et al. Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem. 2001;27644:41279-41287. doi: https://doi.org/10.1074/jbc.M106958200
42. Owen CA, Campbell EJ. The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 1999;65:137-150. doi: https://doi.org/10.1002/jlb.65.2.137
43. Owen CA. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(2):253-268. https://doi.org/10.2147/COPD.S2089
44. Foronjy RF, Mirochnitchenko O, Propokenko O, et al. Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am J Respir Crit Care Med. 2006;173(6):623-631. doi: https://doi.org/10.1164/rccm.200506-850OC
45. Churg A, Wang X, Wang RD, et al. Alpha1-antitrypsin suppresses TNF-alpha and MMP-12 production by cigarette smoke-stimulated macrophages. Am J Respir Cell Mol Biol. 2007;37(2):144-151. doi: https://doi.org/10.1165/rcmb.2006-0345OC
46. Sapey E, Wood AM, Ahmad A, Stockley RA. Tumor necrosis factor-{alpha} rs361525 polymorphism is associated with increased local production and downstream inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2010;182(2):192-199. doi: https://doi.org/10.1164/rccm.200912-1846OC
47. McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365:1567-1575. doi: https://doi.org/10.1056/NEJMoa1106955
48. Stockley JA, Ismail AM, Hughes SM, et al. Maximal mid-expiratory flow detects early lung disease in α1-antitrypsin deficiency. Eur Respir J. 2017;49(3):1602055. doi: https://doi.org/10.1183/13993003.02055-2016
49. Churg A, Tai H, Coulthard T, et al. Cigarette smoke drives small airway remodeling by induction of growth factors in the airway wall. Am J Respir Crit Care Med. 2006;174(12):1327-1334. doi: https://doi.org/10.1164/rccm.200605-585OC
50. Yoshikawa A,Sato S, Tanaka T, et al. Breakdown of lung framework and an increase in pores of Kohn as initial events of emphysema and a cause of reduction in diffusing capacity. Int J Chron Obstruct Pulmon Dis. 2016;11:2287-2294. doi: https://doi.org/10.2147/COPD.S114281
51. Wright JL. The importance of ultramicroscopic emphysema in cigarette smoke-induced lung disease. Lung. 2001;179:71-81. doi: https://doi.org/10.1007/s004080000048
52. Joshi R, Heinz A, Fan Q, et al. Role for Cela1 in postnatal lung remodelling and alpha-1 antitrypsin deficient emphysema. Am J Respir Cell Mol Biol. 2018;59(2):167-178. doi: https://doi.org/10.1165/rcmb.2017-0361OC
53.Taggart C, Mall MA, Lalmanach G, et al. Protean proteases: at the cutting edge of lung diseases. Eur Respir J. 2017;49(2):pii-1501200. doi: https://doi.org/10.1183/13993003.01200-2015