1. Silverman EK, Pierce JA, Province MA, Rao DC, Campbell EJ. Variability of pulmonary function in alpha-1 antitrypsin deficiency: clinical correlates. Ann Intern Med. 1989;111(12):982-991. doi: https://doi.org/10.7326/0003-4819-111-12-982
2. Tanash HA, Ekstrom M, Ronmark E, Lindberg A, Piitulainen E. Survival in individuals with severe alpha-1 antitrypsin deficiency (PiZZ) in comparison to a general population with known smoking habits. Eur Respir J. 2017;50(3):1700198. doi: https://doi.org/10.1183/13993003.00198-2017
3. Castaldi PJ, DeMeo DL, Kent DM, et al. Development of predictive models for airflow obstruction in alpha-1 antitrypsin deficiency. Am J Epidemiol. 2009;170(8):1005-1013. doi: https://doi.org/10.1093/aje/kwp216
4. Bernspang E, Sveger T, Piitulainen E. Respiratory symptoms and lung function in 30-year-old individuals with alpha-1 antitrypsin deficiency. Respir Med. 2007;101(9):1971-1976. doi: https://doi.org/10.1016/j.rmed.2007.04.003
5. Wilk JB, Djousse L, Arnett DK, et al. Evidence for major genes influencing pulmonary function in the NHLBI family heart study. Genet Epidemiol. 2000;19(1):81-94. doi: https://doi.org/10.1002/1098-2272(200007)19:1<81::AID-GEPI6>3.0.CO;2-8
6. Palmer LJ, Knuiman MW, Divitini ML, et al. Familial aggregation and heritability of adult lung function: results from the Busselton Health Study. Eur Respir J. 2001;17(4):696-702. doi: https://doi.org/10.1183/09031936.01.17406960
7. Silverman EK, Mosley JD, Palmer LJ, et al. Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum Mol Genet. 2002;11(6):623-632. doi: https://doi.org/10.1093/hmg/11.6.623
8. Ingebrigtsen T, Thomsen SF, Vestbo J, et al. Genetic influences on chronic obstructive pulmonary disease - a twin study. Respir Med. 2010;104(12):1890-1895. doi: https://doi.org/10.1016/j.rmed.2010.05.004
9. Hukkinen M, Kaprio J, Broms U, et al. Heritability of lung function: a twin study among never-smoking elderly women. Twin Res Hum Genet. 2011;14(5):401-407. doi: https://doi.org/10.1375/twin.14.5.401
10. Klimentidis YC, Vazquez AI, de Los Campos G, et al. Heritability of pulmonary function estimated from pedigree and whole-genome markers. Front Genet. 2013;4:174. doi: https://doi.org/10.3389/fgene.2013.00174
11. Zhou JJ, Cho MH, Castaldi PJ, Hersh CP, Silverman EK, Laird NM. Heritability of chronic obstructive pulmonary disease and related phenotypes in smokers. Am J Respir Crit Care Med. 2013;188(8):941-947. doi: https://doi.org/10.1164/rccm.201302-0263OC
12. Vanscoy LL, Blackman SM, Collaco JM, et al. Heritability of lung disease severity in cystic fibrosis. Am J Respir Crit Care Med. 2007;175(10):1036-1043. doi: https://doi.org/10.1164/rccm.200608-1164OC
13. Silverman EK, Province MA, Rao DC, Pierce JA, Campbell EJ. A family study of the variability of pulmonary function in alpha 1-antitrypsin deficiency. Quantitative phenotypes. Am Rev Respir Dis. 1990;142(5):1015-1021. doi: https://doi.org/10.1164/ajrccm/142.5.1015
14. DeMeo DL, Sandhaus RA, Barker AF, et al. Determinants of airflow obstruction in severe alpha-1-antitrypsin deficiency. Thorax. 2007;62(9):806-813. doi: https://doi.org/10.1136/thx.2006.075846
15. DeMeo DL, Campbell EJ, Brantly ML, et al. Heritability of lung function in severe alpha-1 antitrypsin deficiency. Hum Hered. 2009;67(1):38-45. doi: https://doi.org/10.1159/000164397
16. Lusis AJ. Genetic factors affecting blood lipoproteins: the candidate gene approach. J Lipid Res. 1988;29(4):397-429. doi: https://doi.org/10.5924/abgri1983.1988.29
17. Kwon JM, Goate AM. The candidate gene approach. Alcohol Res Health. 2000;24(3):164-168.
18. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109-142.
19. Barnes PJ, Belvisi MG. Nitric oxide and lung disease. Thorax. 1993;48(10):1034-1043. doi: https://doi.org/10.1136/thx.48.10.1034
20. Novoradovsky A, Brantly ML, Waclawiw MA, et al. Endothelial nitric oxide synthase as a potential susceptibility gene in the pathogenesis of emphysema in alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol. 1999;20(3):441-447. doi: https://doi.org/10.1165/ajrcmb.20.3.3144
21. Terrier P, Townsend AJ, Coindre JM, Triche TJ, Cowan KH. An immunohistochemical study of pi class glutathione S-transferase expression in normal human tissue. Am J Pathol. 1990;137(4):845-853.
22. Ishii T, Matsuse T, Teramoto S, et al. Glutathione S-transferase P1 (GSTP1) polymorphism in patients with chronic obstructive pulmonary disease. Thorax. 1999;54(8):693-696. doi: https://doi.org/10.1136/thx.54.8.693
23. Rodriguez F, de la Roza C, Jardi R, Schaper M, Vidal R, Miravitlles M. Glutathione S-transferase P1 and lung function in patients with alpha1-antitrypsin deficiency and COPD. Chest. 2005;127(5):1537-1543. doi: https://doi.org/10.1378/chest.127.5.1537
24. DeMeo DL, Campbell EJ, Barker AF, et al. IL10 polymorphisms are associated with airflow obstruction in severe alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol. 2008;38(1):114-120. doi: https://doi.org/10.1165/rcmb.2007-0107OC
25. Hersh CP, Demeo DL, Lange C, et al. Attempted replication of reported chronic obstructive pulmonary disease candidate gene associations. Am J Respir Cell Mol Biol. 2005;33(1):71-78. doi: https://doi.org/10.1165/rcmb.2005-0073OC
26. Wood AM, Simmonds MJ, Bayley DL, Newby PR, Gough SC, Stockley RA. The TNFalpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency. Respir Res. 2008;9:52. doi: https://doi.org/10.1186/1465-9921-9-52
27. Lander E, Kruglyak L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet. 1995;11(3):241-247. doi: https://doi.org/10.1038/ng1195-241
28. Lander ES, Schork NJ. Genetic dissection of complex traits. Science. 1994;265(5181):2037-2048. doi: https://doi.org/10.1126/science.8091226
29. Khoury MJ, Yang Q. The future of genetic studies of complex human diseases: an epidemiologic perspective. Epidemiology. 1998;9(3):350-354. doi: https://doi.org/10.1097/00001648-199805000-00023
30. Lin JR, Cai Y, Zhang Q, Zhang W, Nogales-Cadenas R, Zhang ZD. Integrated post-GWAS analysis sheds new light on the disease mechanisms of schizophrenia. Genetics. 2016;204(4):1587-1600. doi: https://doi.org/10.1534/genetics.116.187195
31. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet Med. 2002;4(2):45-61. doi: https://doi.org/10.1097/00125817-200203000-00002
32. Siontis KC, Patsopoulos NA, Ioannidis JP. Replication of past candidate loci for common diseases and phenotypes in 100 genome-wide association studies. Eur J Hum Genet. 2010;18(7):832-837. doi: https://doi.org/10.1038/ejhg.2010.26
33. Ioannidis JP, Tarone R, McLaughlin JK. The false-positive to false-negative ratio in epidemiologic studies. Epidemiology. 2011;22(4):450-456. doi: https://doi.org/10.1097/EDE.0b013e31821b506e
34. Kraft P, Zeggini E, Ioannidis JP. Replication in genome-wide association studies. Stat Sci. 2009;24(4):561-573. doi: https://doi.org/10.1214/09-STS290
35. Marigorta UM, Rodriguez JA, Gibson G, Navarro A. Replicability and prediction: lessons and challenges from GWAS. Trends Genet. 2018;34(7):504-517. doi: https://doi.org/10.1016/j.tig.2018.03.005
36. Hobbs BD, de Jong K, Lamontagne M, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49(3):426-432. doi: https://doi.org/10.1038/ng.3752
37. Wain LV, Shrine N, Artigas MS, et al. Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet. 2017;49(3):416-425. doi: https://doi.org/10.1038/ng.3787
38. Sakornsakolpat P, Prokopenko D, Lamontagne M, et al; SpiroMeta Consortium, International COPD Genetics Consortium. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nat Genet. 2019;51(3):494-505. doi: https://doi.org/10.1038/s41588-018-0342-2
39. Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet. 2019;51(3):481-493. doi: https://doi.org/10.1038/s41588-018-0321-7
40. Kim WJ, Wood AM, Barker AF, et al. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res. 2012;13:16. doi: https://doi.org/10.1186/1465-9921-13-16
41. Pillai SG, Ge D, Zhu G, et al. A genome-wide association study in chronic obstructive pulmonary disease (COPD): identification of two major susceptibility loci. PLoS Genet. 2009;5(3):e1000421. doi: https://doi.org/10.1371/journal.pgen.1000421
42. Visscher PM, Wray NR, Zhang Q, et al. 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101(1):5-22. doi: https://doi.org/10.1016/j.ajhg.2017.06.005
43. Wright FA, Strug LJ, Doshi VK, et al. Genome-wide association and linkage identify modifier loci of lung disease severity in cystic fibrosis at 11p13 and 20q13.2. Nat Genet. 2011;43(6):539-546. doi: https://doi.org/10.1038/ng.838
44. Corvol H, Blackman SM, Boelle PY, et al. Genome-wide association meta-analysis identifies five modifier loci of lung disease severity in cystic fibrosis. Nat Comm. 2015;6:8382. doi: https://doi.org/10.1038/ncomms9382
45. Rigobello C, Baraldo S, Tine M, et al. Exome sequencing reveals immune genes as susceptibility modifiers in individuals with alpha-1 antitrypsin deficiency. Sci Rep. 2019;9(1):13088. doi: https://doi.org/10.1038/s41598-019-49409-1
46. Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47(9):1091-1098. doi: https://doi.org/10.1038/ng.3367
47. Lamontagne M, Couture C, Postma DS, et al. Refining susceptibility loci of chronic obstructive pulmonary disease with lung eqtls. PLoS One. 2013;8(7):e70220. doi: https://doi.org/10.1371/journal.pone.0070220
48. Castaldi PJ, Cho MH, Zhou X, et al. Genetic control of gene expression at novel and established chronic obstructive pulmonary disease loci. Hum Mol Genet. 2015;24(4):1200-1210. doi: https://doi.org/10.1093/hmg/ddu525
49. Sun W, Kechris K, Jacobson S, et al; Group SR, Investigators CO. Common genetic polymorphisms influence blood biomarker measurements in COPD. PLoS Genet. 2016;12(8):e1006011. doi: https://doi.org/10.1371/journal.pgen.1006011
50. Aschard H, Tobin MD, Hancock DB, et al. Evidence for large-scale gene-by-smoking interaction effects on pulmonary function. Int J Epidemiol. 2017;46(3):894-904. doi: https://doi.org/10.1093/ije/dyw318
51. Oelsner EC, Ortega VE, Smith BM, et al. A genetic risk score associated with COPD susceptibility and lung structure on computed tomography. Am J Respir Crit Care Med. 2019;200(6). doi: https://doi.org/10.1164/rccm.201812-2355OC