1. Jacobsson KI. Studies on the determination of fibrinogen in human blood plasma. II. Studies on the trypsin and plasmin inhibitors in human blood serum. Scand J Clin Lab Invest. 1955;7:3-102.
2 Drew W, Wilson DV, Sapey E. Inflammation and neutrophil immunosenescence in health and disease: Targeted treatments to improve clinical outcomes in the elderly. Exp Gerontol. 2018;105:70-77. doi: https://doi.org/10.1016/j.exger.2017.12.020
3. Brezski RJ, Jordan RE. Cleavage of IgGs by proteases associated with invasive diseases: An evasion tactic against host immunity? mAbs. 2010;2(3):212-220. doi: https://doi.org/10.4161/mabs.2.3.11780
4. Butler A, Walton GM, Sapey E. Neutrophilic inflammation in the pathogenesis of chronic obstructive pulmonary disease. COPD. 2018;15(4):1-13.
5. Joslin G, Griffin GL, August AM, et al. The serpin-enzyme complex (SEC) receptor mediates the neutrophil chemotactic effect of alpha-1 antitrypsin-elastase complexes and amyloid-beta peptide. J Clin Invest. 1992;90(3):1150-1154. doi: https://doi.org/10.1172/JCI115934
6. Boxio R, Wartelle J, Nawrocki-Raby B, et al. Neutrophil elastase cleaves epithelial cadherin in acutely injured lung epithelium. Respir Res. 2016;7:129. doi: https://doi.org/10.1186/s12931-016-0449-x
7. Lee K-H, Jeong J, Koo Y-J, Jang A-H, Lee C-H, Yoo C-G. Exogenous neutrophil elastase enters bronchial epithelial cells and suppresses cigarette smoke extract-induced heme oxygenase-1 by cleaving sirtuin 1. J Biologic Chem. 2017;292:1970-11979. doi: https://doi.org/10.1074/jbc.M116.771089
8. Sapey E, Stockley JA, Greenwood H, et al. Behavioral and structural differences in migrating peripheral neutrophils from patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2011;183(9):1176-1186. doi: https://doi.org/10.1164/rccm.201008-1285OC
9. Shapiro SD, Goldstein NM, Houghton AM, Kobayashi DK, Kelley D, Belaaouaj A. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am J Pathol. 2003;163(6):2329-2335. doi: https://doi.org/10.1016/S0002-9440(10)63589-4
10. Madge N, Donnelly L, Rogers D. Neutrophil elastase contributes to activated human neutrophil-induced rat small airway dysfunction. Eur Respir J .2015;46(Suppl59):PA913. doi: https://doi.org/10.1183/13993003.congress-2015.PA913
11. Voynow JA, Fischer BM, Malarkey DE, et al. Neutrophil elastase induces mucus cell metaplasia in mouse lung. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1293-L1302. doi: https://doi.org/10.1152/ajplung.00140.2004
12. Delacourt C, Hérigault S, Delclaux C, et al. Protection against acute lung injury by intravenous or intratracheal pretreatment with EPI-HNE-4, a new potent neutrophil elastase inhibitor. Am J Respir Cell Mol Biol. 2002;26(3):290-297. doi: https://doi.org/10.1165/ajrcmb.26.3.4611
13. Thulborn SJ, Mistry V, Brightling CE, Moffitt KL, Ribeiro D, Bafadhel M. Neutrophil elastase as a biomarker for bacterial infection in COPD. Respir Res. 2019;20:170. doi: https://doi.org/10.1186/s12931-019-1145-4
14. Rijken F, Bruijnzeel PLB. The pathogenesis of photoaging: the role of neutrophils and neutrophil-derived enzymes. J Investig Dermatol Symp Proc. 2009;14(1):67-72. doi: https://doi.org/10.1038/jidsymp.2009.15
15. Taylor S, Dirir O, Zamanian RT, Rabinovitch M, Thompson AAR. The role of neutrophils and neutrophil elastase in pulmonary arterial hypertension. Front Med. 2018;5:217. doi: https://doi.org/10.3389/fmed.2018.00217
16. Campbell EJ, Campbell MA, Boukedes SS, Owen CA. Quantum proteolysis by neutrophils; implications for pulmonary emphysema in alpha-1 antitrypsin deficiency. J Clin Invest. 1999;104(3):337-344. doi: https://doi.org/10.1172/JCI6092
17. Sinden NJ, Baker MJ, Smith DJ, Kreft J-U, Dafforn TR, Stockley RA. α-1-antitrypsin variants and the proteinase/antiproteinase imbalance in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 2015;308(2):L179-L190. doi: https://doi.org/10.1152/ajplung.00179.2014
18. Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res. 2018;19:180. doi: https://doi.org/10.1186/s12931-018-0883-z
19. Bucurenci N, Blake DR, Chidwick K, Winyard PG. Inhibition of neutrophil superoxide production by human plasma α1-antitrypsin. FEBS Letters. 1992;300:21-24. doi: https://doi.org/10.1016/0014-5793(92)80156-B
20. Alfawaz B, Bergin DA, McElvaney NG, Reeves EP. Alpha-1 antitrypsin regulates neutrophil reactive oxygen species production via inhibition of key players of the respiratory burst oxidase system. BMC Proceedings. 2013;7:P7-P7. doi: https://doi.org/10.1186/1753-6561-7-S1-P7
21. Janciauskiene S, Tumpara S, Wiese M, et al. Alpha-1 antitrypsin binds hemin and prevents oxidative activation of human neutrophils: putative pathophysiological significance. J Leukoc Biol. 2017;102:1127-1141. doi: https://doi.org/10.1189/jlb.3A0317-124R
22. Lomas DA, Stone SR, Llewellyn-Jones C, Keogan MT, Wang ZM, Rubin H. The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin. J Biol Chem. 1996;270:23437-23443. doi:https://doi.org/10.1074/jbc.270.40.23437
23. Churg A, Wang X, Wang RD, Meixner SC, Pryzdial ELG, Wright JL. α1-antitrypsin suppresses TNF-α and MMP-12 production by cigarette smoke-stimulated macrophages. Am J Respir Cell Mol Biol. 2007;37(2):144-151. doi: https://doi.org/10.1165/rcmb.2006-0345OC
24. Nita I, Hollander C, Westin U, Janciauskiene S-M. Prolastin, a pharmaceutical preparation of purified human alpha-1 antitrypsin, blocks endotoxin-mediated cytokine release. Respir Res. 2005;6:12. doi: https://doi.org/10.1186/1465-9921-6-12
25. Cantin AM, Woods DE. Aerosolized prolastin suppresses bacterial proliferation in a model of chronic pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med. 1999;160(4):1130-1135. doi: https://doi.org/10.1164/ajrccm.160.4.9807166
26. Zhou X, Liu Z, Zhang J, Adelsberger JW, Yang J, Burton GF. Alpha-1 antitrypsin interacts with gp41 to block HIV-1 entry into CD4+ T lymphocytes. BMC Microbiol. 2016;16:172. doi: https://doi.org/10.1186/s12866-016-0751-2
27. Gupta J, Chattopadhaya D, Bhadoria DP, et al. T lymphocyte subset profile and serum alpha-1 antitrypsin in pathogenesis of chronic obstructive pulmonary disease. Clin Exp Immunol. 2007;149(3):463-469. doi: https://doi.org/10.1111/j.1365-2249.2007.03429.x
28. Zhang B, Lu Y, Campbell-Thompson M, et al. α1-antitrypsin protects β-cells from apoptosis. Diabetes. 2007;56(5):1316. doi: https://doi.org/10.2337/db06-1273
29. Sveger T. Liver disease in alpha-1 antitrypsin deficiency detected by screening of 200,000 infants. New Eng J Med. 1976;294:1316-1321. doi: https://doi.org/10.1056/NEJM197606102942404
30. O'Brien ML, Buist NRM, Murphey WH. Neonatal screening for alpha<sub>1</sub>-antitrypsin deficiency. J Pediatr. 1978;92:1006-1010. doi: https://doi.org/10.1016/S0022-3476(78)80388-6
31. Stockley JA, Ismail AM, Hughes SM, Edgar R, Stockley RA, Sapey E. Maximal mid-expiratory flow detects early lung disease in alpha1-antitrypsin deficiency. Eur Respir J. 2017;49(3):1-10. doi: https://doi.org/10.1183/13993003.02055-2016
32. Campos MA, Wanner A, Zhang G, Sandhaus RA. Trends in the diagnosis of symptomatic patients with alpha-1 antitrypsin deficiency between 1968 and 2003. Chest. 2005;128(3):1179-1186. doi: https://doi.org/10.1378/chest.128.3.1179
33. Balbi B, Ferrarotti I, Miravitlles M. Efficacy of augmentation therapy for emphysema associated with α-1 antitrypsin deficiency: enough is enough. Eur Respir J. 2016;47(1):35. doi: https://doi.org/10.1183/13993003.01145-2015
34. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318-324. doi: https://doi.org/10.1016/j.it.2010.05.006
35. Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159-175. doi: https://doi.org/10.1038/nri3399
36. Eash KJ, Greenbaum AM, Gopalan PK, Link DC. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J Clin Invest. 2010;120(7):2423-2431. doi: https://doi.org/10.1172/JCI41649
37. Németh T, Mócsai A. Feedback amplification of neutrophil function. Trends Immunol. 2016;37(6):412-424. doi: https://doi.org/10.1016/j.it.2016.04.002
38. Liou TG, Campbell EJ. Quantum proteolysis resulting from release of single granules by human neutrophils: a novel, nonoxidative mechanism of extracellular proteolytic activity. J Immunol. 1996;157(6):2624-2631.
39. Lämmermann T, Afonso PV, Angermann BR, et al. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature. 2013;498:371-375. doi: https://doi.org/10.1038/nature12175
40. Amulic B, Cazalet C, Hayes GL, Metzler KD, Zychlinsky A. neutrophil function: from mechanisms to disease. Annu Rev Immunol. 2012;30:459-489. doi: https://doi.org/10.1146/annurev-immunol-020711-074942
41. Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin? J Cell Biol. 198(5):773. doi: https://doi.org/10.1083/jcb.201203170
42. Sapey E, Stockley RA. Red, amber and green: the role of the lung in de-priming active systemic neutrophils. Thorax. 2014;69(7):606-608. doi: https://doi.org/10.1136/thoraxjnl-2014-205438
43. Ekpenyong AE, Toepfner N, Fiddler C, et al. Mechanical deformation induces depolarization of neutrophils. Sci Adv. 2017;3:e1602536. doi: https://doi.org/10.1126/sciadv.1602536
44. Vogt KL, Summers C, Chilvers E, M Condliffe A. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur J Clin Invest. 2018;48(S2):e12967. doi: https://doi.org/10.1111/eci.12967
45. Casanova-Acebes M, Pitaval C, Weiss LA, e tal. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell. 2013;153(5):1025-1035. doi: https://doi.org/10.1016/j.cell.2013.04.040
46. Martin C, Burdon PCE, Bridger G, et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity. 2003;19(4):583-593. doi: https://doi.org/10.1016/S1074-7613(03)00263-2
47. Uhl B, Vadlau Y, Zuchtriegel G, et al. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood. 2016;128(19):2327-2337. doi: https://doi.org/10.1182/blood-2016-05-718999
48. Zhang D, Chen G, Manwani D, et al. Neutrophil ageing is regulated by the microbiome. Nature. 2015;525:528-532. doi: https://doi.org/10.1038/nature15367
49. Yost CC, Denis MM, Lindemann S, et al. Activated polymorphonuclear leukocytes rapidly synthesize retinoic acid receptor-α. J Exp Med. 2004;200(5):671. doi: https://doi.org/10.1084/jem.20040224
50. Sagiv Jitka Y, Michaeli J, Assi S, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Reports. 2015;10(4):562-573. doi: https://doi.org/10.1016/j.celrep.2014.12.039
51. Pillay J, Kamp VM, van Hoffen E, et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122(1):327-336. doi: https://doi.org/10.1172/JCI57990
52. Buckley CD, Ross EA, McGettrick HM, et al. Identification of a phenotypically and functionally distinct population of long-lived neutrophils in a model of reverse endothelial migration. J Leukoc Biol. 2006;79(2):303-311. doi: https://doi.org/10.1189/jlb.0905496
53. Bekes EM, Schweighofer B, Kupriyanova TA, Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. Am J Pathol. 2011;179(3):1455-1470. doi: https://doi.org/10.1016/j.ajpath.2011.05.031
54. Christoffersson G, Vågesjö E, Vandooren J, et al.VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood. 2012;120(23):4653. doi: https://doi.org/10.1182/blood-2012-04-421040
55. Massena S, Christoffersson G, Vågesjö E, et al. Identification and characterization of VEGF-A-responsive neutrophils expressing CD49d, VEGFR1, and CXCR4 in mice and humans. Blood. 2015;126(17):2016-2056. doi: https://doi.org/10.1182/blood-2015-03-631572
56. Hughes MJ, Sapey E, Stockley R. Neutrophil phenotypes in chronic lung disease. Expert Rev Respir Med. 2019;13(10):951-967. doi: https://doi.org/10.1080/17476348.2019.1654377
57. Weinberger B, Laskin DL, Mariano TM, et al. Mechanisms underlying reduced responsiveness of neonatal neutrophils to distinct chemoattractants. J Leukoc Biol. 2001;70:969-976.
58. Levy O, Martin S, Eichenwald E, et al. Impaired innate immunity in the newborn: newborn neutrophils are deficient in bactericidal/permeability-increasing protein. Pediatrics. 1999;104(6):1327-1333. doi: https://doi.org/10.1542/peds.104.6.1327
59. Makoni M, Eckert J, Anne Pereira H, Nizet V, Lawrence SM. Alterations in neonatal neutrophil function attributable to increased immature forms. Early Hum Dev. 2016;103:1-7. doi: https://doi.org/10.1016/j.earlhumdev.2016.05.016
60. Bektas S, Goetze B, Speer CP. Decreased adherence, chemotaxis and phagocytic activities of neutrophils from preterm neonates. Acta Paediatr Scand. 1990;79(11):1031-1038. doi: https://doi.org/10.1111/j.1651-2227.1990.tb11379.x
61. Yost CC, Cody MJ, Harris ES, et al. Impaired neutrophil extracellular trap (NET) formation: a novel innate immune deficiency of human neonates. Blood. 2009;113(25):6419. doi: https://doi.org/10.1182/blood-2008-07-171629
62. Sapey E, Greenwood H, Walton G, et al. Phosphoinositide 3-kinase inhibition restores neutrophil accuracy in the elderly: toward targeted treatments for immunosenescence. Blood. 2014;123(2):239-248. doi: https://doi.org/10.1182/blood-2013-08-519520
63. Hazeldine J, Harris P, Chapple IL, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014;13(4):690-698. doi: https://doi.org/10.1111/acel.12222
64. Butcher S, Chahel H, Lord JM. Ageing and the neutrophil: no appetite for killing? Immunology. 2000;100(4):411-416. doi: https://doi.org/10.1046/j.1365-2567.2000.00079.x
65. Butcher SK, Chahal H, Nayak L, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70:881-886.
66. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int. 2009;22(11):1041-1050. doi: https://doi.org/10.1111/j.1432-2277.2009.00927.x
67. Ogawa K, Suzuki K, Okutsu M, Yamazaki K, Shinkai S. The association of elevated reactive oxygen species levels from neutrophils with low-grade inflammation in the elderly. Immun Ageing. 2008;5:13. doi: https://doi.org/10.1186/1742-4933-5-13
68. Sauce D, Dong Y, Campillo-Gimenez L, et al. Reduced oxidative burst by primed neutrophils in the elderly individuals is associated with increased levels of the CD16bright/cd62ldim immunosuppressive subset. J Gerontol A Biol Sci Med Sci. 2016;72(2):163-172. doi: https://doi.org/10.1093/gerona/glw062
69. Sadiku P, Willson JA, Dickinson RS, et al. Prolyl hydroxylase 2 inactivation enhances glycogen storage and promotes excessive neutrophilic responses. J Clin Invest. 2017;127(9):3407-3420. doi: https://doi.org/10.1172/JCI90848
70. Patel JM, Sapey E, Parekh D, et al. Sepsis induces a dysregulated neutrophil phenotype that is associated with increased mortality. Mediators Inflamm. 2018;2018:4065362. doi: https://doi.org/10.1155/2018/4065362
71. Sapey E, Patel JM, Greenwood H, et al. Simvastatin improves neutrophil function and clinical outcomes in pneumonia: a pilot randomised controlled trial. Am J Respir Crit Care Med. 2019;200(100):1282-1293. doi: https://doi.org/10.1164/rccm.201812-2328OC
72. Sapey E, Patel JM, Greenwood HL, et al. Pulmonary infections in the elderly lead to impaired neutrophil targeting, which is improved by simvastatin. Am J Respir Crit Care Med. 2017;196(10):1325-1336. doi: https://doi.org/10.1164/rccm.201704-0814OC
73. Chatta GS, Andrews RG, Rodger E, Schrag M, Hammond WP, Dale DC. Hematopoietic progenitors and aging: alterations in granulocytic precursors and responsiveness to recombinant human G-CSF, GM-CSF, and IL-3. J Gerontol. 1993;48(5):M207-212. doi: https://doi.org/10.1093/geronj/48.5.M207
74. Walton GM, Stockley JA, Griffiths D, Sadhra CS, Purvis T, Sapey E. Repurposing treatments to enhance innate immunity. can statins improve neutrophil functions and clinical outcomes in COPD? J Clin Med. 2016;5(10):89. doi: https://doi.org/10.3390/jcm5100089
75. Bartlett DB, Fox O, McNulty CL, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults. Brain Behav Immun. 2016;56:12-20. doi: https://doi.org/10.1016/j.bbi.2016.02.024
76. Rouhani F, Paone G, Smith NK, Krein P, Barnes P, Brantly ML. Lung neutrophil burden correlates with increased pro-inflammatory cytokines and decreased lung function in individuals with α1-antitrypsin deficiency. Chest. 2000;117(5Suppl1):250S-251S. doi: https://doi.org/10.1378/chest.117.5_suppl_1.250S
77. Woolhouse IS. Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of alpha-1 antitrypsin deficiency and the role of leukotriene B4 and interleukin 8. Thorax. 2002;57(8):709-714. doi: https://doi.org/10.1136/thorax.57.8.709
78. Sapey E, Bayley D, Ahmad A, Newbold P, Snell N, Stockley RA. Inter-relationships between inflammatory markers in patients with stable COPD with bronchitis: intra-patient and inter-patient variability. Thorax. 2008;63(6):493-499. doi: https://doi.org/10.1136/thx.2007.086751
79. Stone H, McNab G, Wood AM, Stockley RA, Sapey E. Variability of sputum inflammatory mediators in COPD and alpha-1 antitrypsin deficiency. Eur Respir J. 2012; 40(3):561-569. doi: https://doi.org/10.1183/09031936.00162811
80. Gane JM, Stockley RA, Sapey E. TNF-alpha autocrine feedback loops in human monocytes: the pro- and anti-inflammatory roles of the TNF-alpha receptors support the concept of selective TNFr-1 blockade in vivo. J Immunol Res. 2016;1079851. doi: https://doi.org/10.1155/2016/1079851
81. Stylianou E. Epigenetics of chronic inflammatory diseases. J Inflamm Res. 2018;12:1-14. doi: https://doi.org/10.2147/JIR.S129027
82. Baraldo S, Turato G, Lunardi F, et al. Immune activation in α1-antitrypsin-deficiency emphysema. Beyond the protease-antiprotease paradigm. Am J Respir Crit Care Med. 2014;191(4):402-409. doi: https://doi.org/10.1164/rccm.201403-0529OC
83. Sveger T, Piitulainen E, Arborelius Jr M. Lung function in adolescents with α1-antitrypsin deficiency. Acta Paediatr. 1994;83(11):1170-1173. doi: https://doi.org/10.1111/j.1651-2227.1994.tb18275.x
84. Piitulainen E, Sveger T. Respiratory symptoms and lung function in young adults with severe alpha(1)-antitrypsin deficiency (PiZZ). Thorax. 2002;57(8):705-708. doi: https://doi.org/10.1136/thorax.57.8.705
85. Mostafavi B, Diaz S, Piitulainen E, Stoel BC, Wollmer P, Tanash HA. Lung function and CT lung densitometry in 37- to 39-year-old individuals with alpha-1-antitrypsin deficiency. Int J Chron Obstr Pulmon Dis. 2018;13:3689-3698. doi: https://doi.org/10.2147/COPD.S167497
86. Bergin DA, Reeves EP, Meleady P, et al. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clinical Invest. 2010;120(12):4236-4250. doi: https://doi.org/10.1172/JCI41196
87. Zen K, Guo Y-L, Li L-M, Bian Z, Zhang C-Y, Liu Y. Cleavage of the CD11b extracellular domain by the leukocyte serprocidins is critical for neutrophil detachment during chemotaxis. Blood. 2011;117(18):4885-4894. doi: https://doi.org/10.1182/blood-2010-05-287722
88. DeLano Frank A, Schmid-Schönbein Geert W. Proteinase activity and receptor cleavage. Hypertension. 2008;52(2):415-423. doi: https://doi.org/10.1161/HYPERTENSIONAHA.107.104356
89. Newby PR, Crossley D, Crisford H, et al. A specific proteinase 3 activity footprint in αlpha-1 antitrypsin deficiency. ERJ Open Res. 2019;5(3):00095-02019. doi: https://doi.org/10.1183/23120541.00095-2019
90. Carter RI, Ungurs MJ, Pillai A, Mumford RA, Stockley RA. The relationship of the fibrinogen cleavage biomarker aa-Val360 with disease severity and activity in alpha-1 antitrypsin deficiency. Chest. 2015;148(2):382-388. https://doi.org/10.1378/chest.14-0520
91. Walton G, Butler A, Stockley R, Donnelly L, Sapey E. Impaired serum opsonisation of non-typeable Haemophilus influenzae in COPD and alpha-1 antitrypsin deficiency. A potential mechanism for reduced bacterial clearance? Eur Respir J. 2017;50(Suppl 61):PA993. doi: https://doi.org/10.1183/1393003.congress-2017.PA993
92. Frenzel E, Korenbaum E, Hegermann J, et al. Does augmentation with alpha1-antitrypsin affect neutrophil extracellular traps formation? Int J Biol Sci. 2012;8(7):1023-1025. doi: https://doi.org/10.7150/ijbs.4701
93. Hurley K, Lacey N, O'Dwyer CA, et al. Alpha-1 antitrypsin augmentation therapy corrects accelerated neutrophil apoptosis in deficient individuals. J Immunol. 2014;193(8):3978-3991. doi: https://doi.org/10.4049/jimmunol.1400132
94. Jones HA, Boobis AR, Hamacher K, Coenen HH, Clark JC. PET imaging of pulmonary fibrosis. J Nucl Med. 2003;44:483-484; author reply 484.
95. Jones NA, Boswell-Smith V, Lever R, Page CP. The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm Pharmacol Ther. 2005;18(2):93-101. doi: https://doi.org/10.1016/j.pupt.2004.10.001
96. Subramanian DR, Jenkins L, Edgar R, Quraishi N, Stockley RA, Parr DG. Assessment of pulmonary neutrophilic inflammation in emphysema by quantitative positron emission tomography. Am J Respir Crit Care Med. 2012;186(11):1125-1132. doi: https://doi.org/10.1164/rccm.201201-0051OC
97. Carter RI, Mumford RA, Treonze KM, et al. The fibrinogen cleavage product Aα-Val360 specific marker of neutrophil elastase activity in vivo. Thorax. 2011;66(8):686. doi: https://doi.org/10.1136/thx.2010.154690
98. Crossley D, Stockley R, Sapey E. Alpha-1 antitrypsin deficiency and accelerated aging: a new model for an old disease? Drugs Aging. 2019;36:823-840. doi: https://doi.org/10.1007/s40266-019-00684-7
99. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4-S9. doi: https://doi.org/10.1093/gerona/glu057
100. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi: https://doi.org/10.1016/j.cell.2013.05.039
101. Renz H, Autenrieth IB, Brandtzæg P, et al. Gene-environment interaction in chronic disease: a European Science Foundation forward look. J Allergy Clin Immunol. 2011;128(6Suppl):S27-S49. doi: https://doi.org/10.1016/j.jaci.2011.09.039
102. Chatterjee A, Stockwell PA, Rodger EJ, et al. Genome-wide DNA methylation map of human neutrophils reveals widespread inter-individual epigenetic variation. Sci Rep. 2015;5:17328. doi: https://doi.org/10.1038/srep17328
103. Stockley JA, Walton GM, Lord JM, Sapey E. Aberrant neutrophil functions in stable chronic obstructive pulmonary disease: the neutrophil as an immunotherapeutic target. Int Immunopharmacol. 2013;17(4):1211-1217. doi: https://doi.org/10.1016/j.intimp.2013.05.035