1. Lavorini F, Buttini F, Usmani OS. 100 years of drug delivery to the lungs. In: Barrett J, Page C, Michel M, eds. Concepts and Principles of Pharmacology. Handbook of Experimental Pharmacology, vol 260. Springer, Cham; 2019. doi: https://doi.org/10.1007/164_2019_335
2. Lavorini F, Fontana GA, Usmani OS. New inhaler devices - the good, the bad and the ugly. Respiration. 2014;88(1):3-15. doi: https://doi.org/10.1159/000363390
3. Horváth I, Canotilho M, Chlumský J, et al. Diagnosis and management of α1-antitrypsin deficiency in Europe: an expert survey. ERJ Open Res. 2019;5(1):00171-2018. doi: https://doi.org/10.1183/23120541.00171-2018
4. Wewers MD, Casolaro MA, Sellers SE, et al. Replacement therapy for alpha 1-antitrypsin deficiency associated with emphysema. N Engl J Med. 1987;316(17):1055-1062. doi: https://doi.org/10.1056/NEJM198704233161704
5. Parr DG, Dirksen A, Piitulainen E, Deng C, Wencker M, Stockley RA. Exploring the optimum approach to the use of CT densitometry in a randomised placebo-controlled study of augmentation therapy in alpha 1-antitrypsin deficiency. Respir Res. 2009;10(1):75. doi: https://doi.org/10.1186/1465-9921-10-75
6. Hubbard RC, McElvaney NG, Sellers SE, Healy JT, Czerski DB, Crystal RG. Recombinant DNA-produced alpha 1-antitrypsin administered by aerosol augments lower respiratory tract antineutrophil elastase defenses in individuals with alpha 1-antitrypsin deficiency. J Clin Invest. 1989;84(4):1349-1354. doi: https://doi.org/10.1172/JCI114305
7. Hubbard RC, Brantly ML, Sellers SE, Mitchell ME, Crystal RG. Anti-neutrophil-elastase defenses of the lower respiratory tract in alpha 1-antitrypsin deficiency directly augmented with an aerosol of alpha 1-antitrypsin. Ann Intern Med. 1989;111(3):206-212. doi: https://doi.org/10.7326/0003-4819-111-3-206
8. Monk R, Graves M, Williams P, Strange C. Inhaled alpha 1-antitrypsin: gauging patient interest in a new treatment. COPD. 2013;10(4):411-415. doi:https://doi.org/10.3109/15412555.2012.758698
9. Biddiscombe MF, Usmani OS. Is there room for further innovation in inhaled therapy for airways disease? Breathe (Sheff). 2018;14(3):216-224. doi: https://doi.org/10.1183/20734735.020318
10. Bonini M, Usmani OS. The importance of inhaler devices in the treatment of COPD. COPD Res Prac. 2015;1(1):9. doi: https://doi.org/10.1186/s40749-015-0011-0
11. Bonini M, Usmani OS. The role of the small airways in the pathophysiology of asthma and chronic obstructive pulmonary disease. Ther Adv Respir Dis. 2015;9(6):281-293. doi: https://doi.org/10.1177/1753465815588064
12. Hogg JC, Macklem PT, Thurlbeck WM. Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med. 1968;278(25):1355-1360. doi: https://doi.org/10.1056/NEJM196806202782501
13. Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364(9435):709-721. doi: https://doi.org/10.1016/S0140-6736(04)16900-6
14. Usmani OS. Treating the small airways. Respiration. 2012;84(6):441-453. doi: https://doi.org/10.1159/000343629
15. Biddiscombe MF, Usmani OS, Barnes PJ. A system for the production and delivery of monodisperse salbutamol aerosols to the lungs. Int J Pharm. 2003;254(2):243-253. doi: https://doi.org/10.1016/S0378-5173(03)00032-2
16. Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of beta2-agonist particle size. Am J Respir Crit Care Med. 2005;172(12):1497-1504. doi: https://doi.org/10.1164/rccm.200410-1414OC
17. Biddiscombe M, Meah S, Barnes P, Usmani O. Drug particle size and lung deposition in COPD. Eur Respir J. 2016;48 (suppl 60):PA313. doi: https://doi.org/10.1183/13993003.congress-2016.PA313
18. Brand P, Friemel I, Meyer T, Schulz H, Heyder J, Haußinger K. Total deposition of therapeutic particles during spontaneous and controlled inhalations. J Pharmaceutical Sci. 2000;89:724-731. doi: https://doi.org/10.1002/(SICI)1520-6017(200006)89:6<724::AID-JPS3>3.0.CO;2-B
19. Brand P, Schulte M, Wencker M, et al. Lung deposition of inhaled α1-proteinase inhibitor in cystic fibrosis and α1-antitrypsin deficiency. Eur Respir J. 2009;34:354-360. doi: https://doi.org/10.1183/09031936.00118408
20. Brand P, Beckmann H, Maas Enriquez M, et al. Peripheral deposition of alpha1-protease inhibitor using commercial inhalation devices. Eur Respir J. 2003;22(2):263-267. doi: https://doi.org/10.1183/09031936.03.00096802
21. Biddiscombe MF, Meah SN, Underwood SR, Usmani OS. Comparing lung regions of interest in gamma scintigraphy for assessing inhaled therapeutic aerosol deposition. J Aerosol Med Pulm Drug Deliv. 2011;24(3):165-173. doi: https://doi.org/10.1089/jamp.2010.0845
22. Newman S, Bennett WD, Biddiscombe M, et al. Standardization of techniques for using planar (2D) imaging for aerosol deposition assessment of orally inhaled products. J Aerosol Med Pulm Drug Deliv. 2012;25(Suppl 1):S10-28. doi: https://doi.org/10.1089/jamp.2012.1Su4
23. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part II: the role of inhalant delivery devices and drug formulations in therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):600-612. doi:https://doi.org/10.1046/j.1365-2125.2003.01893.x
24. Labiris NR, Dolovich MB. Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol. 2003;56(6):588-599. doi: https://doi.org/10.1046/j.1365-2125.2003.01892.x
25. Stolk J, Tov N, Chapman KR, et al. Efficacy and safety of inhaled alpha-1-antitrypsin in patients with severe alpha-1 antitrypsin deficiency and frequent exacerbations of COPD. Eur Respir J. 2019;54(5):1900673. doi: https://doi.org/10.1183/13993003.00673-2019
26. Barrecheguren M, Miravitlles M. Treatment with inhaled α1-antitrypsin: a square peg in a round hole? Eur Respir J. 2019;54(5):1901894. doi: https://doi.org/10.1183/13993003.01894-2019
27. Jacobs MR, Criner GJ. Editorial: clinical trial design for alpha-1 antitrypsin deficiency: a model for rare diseases. Chronic Obstr Pulm Dis. 2015;2(2):91-93. doi: https://doi.org/10.15326/jcopdf.2.2.2015.0140
28. Usmani OS, Barnes PJ. Assessing and treating small airways disease in asthma and chronic obstructive pulmonary disease. Ann Med. 2012;44(2):146-156. doi: https://doi.org/10.3109/07853890.2011.585656
29. Holme J, Stockley JA, Stockley RA. Age related development of respiratory abnormalities in non-index α-1 antitrypsin deficient studies. Respir Med. 2013;107(3):387-93. doi: https://doi.org/10.1016/j.rmed.2012.12.003
30. Dawkins PA, Dawkins CL, Wood AM, Nightingale PG, Stockley JA, Stockley RA. Rate of progression of lung function impairment in alpha1-antitrypsin deficiency. Eur Respir J. 2009;33(6):1338-1344. doi: https://doi.org/10.1183/09031936.00061208
31. Dawkins PA, Dowson LJ, Guest PJ, Stockley RA. Predictors of mortality in alpha-1 antitrypsin deficiency. Thorax. 2003;58(12):1020-1026. doi: https://doi.org/10.1136/thorax.58.12.1020
32. McNulty W, Usmani OS. Techniques of assessing small airways dysfunction. Eur Clin Respir J. 2014;1(1):25898. doi: https://doi.org/10.3402/ecrj.v1.25898
33. Mostafavi B, Diaz S, Piitulainen E, Stoel BC, Wollmer P, Tanash HA. Lung function and CT lung densitometry in 37- to 39-year-old individuals with alpha-1-antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis. 2018;13:3689-3698. doi: https://doi.org/10.2147/COPD.S167497
34. Crisafulli E, Pisi R, Aiello M, et al. Prevalence of small-airway dysfunction among COPD patients with different GOLD stages and its role in the impact of disease. Respiration. 2017;93(1):32-41. doi: https://doi.org/10.1159/000452479
35. Galbán CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711-1715. doi: https://doi.org/10.1038/nm.2971
36. Dilektasli AG, Porszasz J, Casaburi R, et al; COPDGene investigators. A novel spirometric measure identifies mild COPD unidentified by standard criteria. Chest. 2016;150(5):1080-1090. doi: https://doi.org/10.1016/j.chest.2016.06.047
37. Criner RN, Hatt CR, Galbán CJ, et al. Relationship between diffusion capacity and small airway abnormality in COPDGene. Respir Res. 2019;20(1):269. doi: https://doi.org/10.1186/s12931-019-1237-1
38. Usmani OS, Biddiscombe MF, Yang S, et al. The topical study of inhaled drug (salbutamol) delivery in idiopathic pulmonary fibrosis. Respir Res. 2018;19(1):25. doi: https://doi.org/10.1186/s12931-018-0732-0
39. Maden CH, Fairman D, Chalker M, et al. Safety, tolerability and pharmacokinetics of GSK3008348, a novel integrin αvβ6 inhibitor, in healthy participants. Eur J Clin Pharmacol. 2018;74(6):701-709. doi: https://doi.org/10.1007/s00228-018-2435-3
40. Koivisto L, Bi J, Häkkinen L, Larjava H. Integrin αvβ6: structure, function and role in health and disease. Int J Biochem Cell Biol. 2018;99:186-196. doi: https://doi.org/10.1016/j.biocel.2018.04.013
41. Braunstein M, Hickey AJ, Ekins S. Why Wait? The case for treating tuberculosis with inhaled drugs. Pharm Res. 2019;36(12):166. doi: https://doi.org/10.1007/s11095-019-2704-6
42. Pitner RA, Durham PG, Stewart IE, et al. A spray-dried combination of capreomycin and CPZEN-45 for inhaled tuberculosis therapy. J Pharm Sci. 2019;108(10):3302-3311. doi: https://doi.org/10.1016/j.xphs.2019.05.024
43. Donnelley M, Parsons DW. Gene therapy for cystic fibrosis lung disease: overcoming the barriers to translation to the clinic. Front Pharmacol. 2018;9:1381. doi: https://doi.org/10.3389/fphar.2018.01381
44. Duncan GA, Kim N, Colon-Cortes Y, et al. An adeno-associated viral vector capable of penetrating the mucus barrier to inhaled gene therapy. Mol Ther Methods Clin Dev. 2018;9:296-304. doi: https://doi.org/10.1016/j.omtm.2018.03.006
45. Perlmutter DH. The role of autophagy in alpha-1-antitrypsin deficiency: a specific cellular response in genetic diseases associated with aggregation-prone proteins. Autophagy. 2006;2(4):258-263. doi: https://doi.org/10.4161/auto.2882
46. Tacke F, Trautwein C. Controlling autophagy: a new concept for clearing liver disease. Hepatology. 2011;53(1):356-358. doi: https://doi.org/10.1002/hep.24090
47. Gupta A, Pant G, Mitra K, Madan J, Chourasia MK, Misra A. Inhalable particles containing rapamycin for induction of autophagy in macrophages infected with Mycobacterium tuberculosis. Mol Pharm. 2014;11(4):1201-1207. doi: https://doi.org/10.1021/mp4006563
48. Gupta A, Sharma D, Meena J, et al. Preparation and preclinical evaluation of inhalable particles containing rapamycin and anti-tuberculosis agents for induction of autophagy. Pharm Res. 2016;33(8):1899-1912. doi: https://doi.org/10.1007/s11095-016-1926-0
49. Tavakol S, Ashrafizadeh M, Deng S, et al. autophagy modulators: mechanistic aspects and drug delivery systems. Biomolecules. 2019;9(10):E530. doi: https://doi.org/10.3390/biom9100530
50. Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67-74. doi: https://doi.org/10.1038/nrd2153
51. Darquenne C, Fleming JS, Katz I, et al. Bridging the gap between science and clinical efficacy: physiology, imaging, and modeling of aerosols in the lung. J Aerosol Med Pulm Drug Deliv. 2016;29(2):107-126. doi: https://doi.org/10.1089/jamp.2015.1270