1. Wang C, Balch WE. Bridging genomics to phenomics at atomic resolution through variation spatial profiling. Cell Rep. 2018;24(8):2013-2028. doi:https://doi.org/10.1016/j.celrep.2018.07.059
2. Bell SC, Mall MA, Gutierrez Het, al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2019;8(1):65-124. doi: https://doi.org/10.1016/S2213-2600(19)30337-6
3. McCague AF, Ranaigh KS, Pellicore MJ, et al. Correlating cystic fibrosis transmembrane conductance regulator function with clinical features to inform precision treatment of cystic fibrosis. Am J Respir Crit Care Med. 2019;199(9):1116-1126. doi: https://doi.org/10.1164/rccm.201901-0145OC
4. Wang C, Scott SM, Sun S, et al. Individualized management of genetic diversity in Niemann-pick c1 through modulation of the hsp70 chaperone system. Hum Mol Genet. 2019;29(1):1-19. doi: https://doi.org/10.1093/hmg/ddz215
5. Wang C, Scott SM, Subramarian K, et al. Quantitating the epigenetic transformation contributing to cholesterol homeostasis using gaussian process. Nat Commun. 2019;10:5052. doi: https://doi.org/10.1038/s41467-019-12969-x
6. Young AI, Benonisdottir S, Przeworski M, Kong A. Deconstructing the sources of genotype-phenotype associations in humans. Science. 2019;365(6460):1396-1400. doi: https://doi.org/10.1126/science.aax3710
7. Zeggini E, Gloyn AL, Barton AC, Wain LV. Translational genomics and precision medicine: Moving from the lab to the clinic. Science. 2019;365(6460):1409-1413. doi: https://doi.org/10.1126/science.aax4588
8. Shrine N, Guyatt AL, Erzrumlacglu M, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nat Genet. 2019;51:481-493. doi: https://doi.org/10.1038/s41588-018-0321-7
9. Di Bisceglie AM, Teckman J. Liver disease due to alpha-1 antitrypsin deficiency: are we surprised that it is more complex than we thought? Hepatology. 2019;70(1):5-7. doi: https://doi.org/10.1002/hep.30694
10. Wang L, Marck GW, Hlady RA, et al. Alpha-1 antitrypsin deficiency liver disease, mutational homogeneity modulated by epigenetic heterogeneity with links to obesity. Hepatology. 2019;70(1):51-66. doi: https://doi.org/10.1002/hep.30526
11. Geyer PE, Kurlak NA, Pichler G, Holdt LM, Teupser D, Mann M et al. Plasma proteome profiling to assess human health and disease. Cell Syst. 2016;2(3):185-195. doi: https://doi.org/10.1016/j.cels.2016.02.015
12. Pankow S, Bamberger C, Calzolari D, et al. F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature. 2015;528:510-516. doi: https://doi.org/10.1038/nature15729
13. Diao W, Laabaki WW, Han MK, et al. Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2019;14:2015-2025. doi: https://doi.org/10.2147/COPD.S210598
14. Integrative HMP Research Network Consortium. The Integrative Human Microbiome Project. Nature. 2019;569:641-648. doi: https://doi.org/10.1038/s41586-019-1238-8
15. Jiang, C. Wang X, Li X, et al. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell. 2018;175(1):277-291. doi: https://doi.org/10.1016/j.cell.2018.08.060
16. Schussler-Fiorenza Rose SM, Contrepois K, Moneghetti KJ, et al. A longitudinal big data approach for precision health. Nat Med. 2019;25:792-804. doi: https://doi.org/10.1038/s41591-019-0414-6
17. Li J, Li X, Zhang S, Snyder M. Gene-environment interaction in the era of precision medicine. Cell. 2019;177(1):38-44. doi: https://doi.org/10.1016/j.cell.2019.03.004
18. Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet. 2019;51:12-18. doi: https://doi.org/10.1038/s41588-018-0295-5
19. Topol E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again. Basic Books, Inc; 2019.
20. Torkamani A, Andersen KG, Steinhubl SR, Topol EJ. High-definition medicine. Cell. 2017;170(5):828-843. doi: https://doi.org/10.1016/j.cell.2017.08.007
21. Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25:44-56. doi: https://doi.org/10.1038/s41591-018-0300-7
22. Blanco I, Bueno P, Diego I, et al. Alpha-1 antitrypsin Pi*Z gene frequency and Pi*ZZ genotype numbers worldwide: an update. Int J Chron Obstruct Pulmon Dis. 2017;12:561-569. doi: https://doi.org/10.2147/COPD.S125389
23. Franciosi AN, Carroll TP, McElvaney NG. Pitfalls and caveats in alpha-1 antitrypsin deficiency testing: a guide for clinicians. Lancet Respir Med. 2019;7(12):1059-1067. doi: https://doi.org/10.1016/S2213-2600(19)30141-9
24. Patel D, Teckman JH. Alpha-1 antitrypsin deficiency liver disease. Clin Liver Dis. 2018;22(4):643-655. doi: https://doi.org/10.1016/j.cld.2018.06.010
25. Ragland MF, Benway CJ, Lutz SM, et al. Genetic advances in chronic obstructive pulmonary disease. Insights from COPDGene. Am J Respir Crit Care Med. 2019;200(6):677-690. doi: https://doi.org/10.1164/rccm.201808-1455SO
26. Jonigk D, Al-Omari M, Maegel L, et al. Anti-inflammatory and immunomodulatory properties of alpha-1 antitrypsin without inhibition of elastase. Proc Natl Acad Sci U S A. 2013;110(37):15007-15012. doi: https://doi.org/10.1073/pnas.1309648110
27. Bai X, Bai A, Honda JR, et al. Alpha-1 antitrypsin enhances primary human macrophage immunity against non-tuberculous mycobacteria. Front Immunol. 2019;10:1417. doi: https://doi.org/10.3389/fimmu.2019.01417
28. Wanner A. Alpha-1 antitrypsin as a therapeutic agent for conditions not associated with alpha-1 antitrypsin deficiency. In: Wanner A, Sandhous RA eds. Alpha-1 Antitrypsin: Role in Health and Disease. Springer International Publishing. 2016:141-155. doi: https://doi.org/10.1007/978-3-319-23449-6_8
29. Zhou T, Huang Z, Zhu X, et al. Alpha-1 antitrypsin attenuates m1 microglia-mediated neuroinflammation in retinal degeneration. Front Immunol. 2018;9:1202. doi: https://doi.org/10.3389/fimmu.2018.01202
30. Lomas DA. New therapeutic targets for alpha-1 antitrypsin deficiency. Chronic Obstr Pulm Dis. 2018;5(4):233-243. doi: https://doi.org/10.15326/jcopdf.5.4.2017.0165
31. de Serres FJ, Blanco I. Prevalence of alpha-1 antitrypsin deficiency alleles PI*S and PI*Z worldwide and effective screening for each of the five phenotypic classes PI*MS, PI*MZ, PI*SS, PI*SZ, and PI*ZZ: a comprehensive review. Ther Adv Respir Dis. 2012;6(5):277-295. doi: https://doi.org/10.1177/1753465812457113
32. Sveger T. Liver disease in alpha-1 antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med. 1976;294:1316-1321. doi: https://doi.org/10.1056/NEJM197606102942404
33. Townsend SA, Edgar RG, Ellis PR, Kantas D, Newsome PN, Turner AM. Systematic review: the natural history of alpha-1 antitrypsin deficiency, and associated liver disease. Aliment Pharmacol Ther. 2018;47(7):877-885. doi: https://doi.org/10.1111/apt.14537
34. Greene CM, Marciniak SJ, Teckman J, et al. Alpha-1 antitrypsin deficiency. Nat Rev Dis Primers. 2016;2:6051. doi: https://doi.org/10.1038/nrdp.2016.51
35. Hamesch K, Madorfer M, Pereira VM, et al. Liver fibrosis and metabolic alterations in adults with alpha-1 antitrypsin deficiency caused by the Pi*ZZ mutation. Gastroenterology. 2019;157(3):705-719. doi: https://doi.org/10.1053/j.gastro.2019.05.013
36. Pan S, Huang L, McPerhson J, et al. Single nucleotide polymorphism-mediated translational suppression of endoplasmic reticulum mannosidase I modifies the onset of end-stage liver disease in alpha1-antitrypsin deficiency. Hepatology. 2009;50(1):275-281. doi: https://doi.org/10.1002/hep.22974
37. Chappell S, Guetta-Baranes T, Hadzic N, Stockley R, Kalsheker N. Polymorphism in the endoplasmic reticulum mannosidase I (MAN1B1) gene is not associated with liver disease in individuals homozygous for the Z variant of the alpha1-antitrypsin protease inhibitor (PiZZ individuals). Hepatology. 2009;50(4):1315-1316. doi: https://doi.org/10.1002/hep.23170
38. O'Brien ME, Pennycooke K, Carroll TP, et al. The impact of smoke exposure on the clinical phenotype of alpha-1 antitrypsin deficiency in Ireland: exploiting a national registry to understand a rare disease. COPD. 2015;12 (Suppl 1):2-9. doi: https://doi.org/10.3109/15412555.2015.1021913
39. Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA. Outdoor air pollution is associated with disease severity in alpha-1 antitrypsin deficiency. Eur Respir J. 2009;34(2):346-353. doi: https://doi.org/10.1183/09031936.00087908
40. Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA. Outdoor air pollution is associated with rapid decline of lung function in alpha-1 antitrypsin deficiency. Occup Environ Med. 2010;67(8):556-561. doi: https://doi.org/10.1136/oem.2009.047589
41. McAloon CJ, Wood AM, Gough SC, Stockley, RA. Matrix metalloprotease polymorphisms are associated with gas transfer in alpha-1 antitrypsin deficiency. Ther Adv Respir Dis. 2009;3(1):23-30. doi: https://doi.org/10.1177/1753465809102263
42. Wood AM, Simmonds MJ, Bayley DL, Newby PR, Gough SC, Stockley RA. The TNF alpha gene relates to clinical phenotype in alpha-1 antitrypsin deficiency. Respir Res. 2008;9:52. doi: https://doi.org/10.1186/1465-9921-9-52
43. Demeo DL, Campbell EJ, Barker AF, et al. IL10 polymorphisms are associated with airflow obstruction in severe alpha1-antitrypsin deficiency. Am J Respir Cell Mol Biol. 2008;38(1):114-120. doi: https://doi.org/10.1165/rcmb.2007-0107OC
44. Kim WJ, Wood AM, Barker AF, et al. Association of IREB2 and CHRNA3 polymorphisms with airflow obstruction in severe alpha-1 antitrypsin deficiency. Respir Res. 2012;13:16. doi: https://doi.org/10.1186/1465-9921-13-16
45. Pye A, Turner AM. Experimental and investigational drugs for the treatment of alpha-1 antitrypsin deficiency. Expert Opin Investig Drugs. 2019;28(10):1-12. doi: https://doi.org/10.1080/13543784.2019.1672656
46. Campos MA, Geraghty P, Holt G, et al. The biological effects of double-dose alpha-1 antitrypsin augmentation therapy. A pilot clinical trial. Am J Respir Crit Care Med. 2019;200(3):318-326. doi: https://doi.org/10.1164/rccm.201901-0010OC
47. Hidvegi T, Ewing M, Hale P, et al. An autophagy-enhancing drug promotes degradation of mutant alpha-1 antitrypsin Z and reduces hepatic fibrosis. Science. 2010;329(598):229-232. doi: https://doi.org/10.1126/science.1190354
48. Tang Y, Blomenkamp KS, Fickert P, Trauner M, Teckman JH. NorUDCA promotes degradation of alpha-1 antitrypsin mutant Z protein by inducing autophagy through AMPK/ULK1 pathway. PLoS One. 2018;13(8):e0200897. doi: https://doi.org/10.1371/journal.pone.0200897
49. Tang Y, Fickert P, Trauner M, Marcus N, BlomenKamp K, Teckman J. Autophagy induced by exogenous bile acids is therapeutic in a model of alpha-1-AT deficiency liver disease. Am J Physiol Gastrointest Liver Physiol. 2016;311(1):G156-165. doi: https://doi.org/10.1152/ajpgi.00143.2015
50. Kaushal S, Annamali M, Blomenkamp K, et al. Rapamycin reduces intrahepatic alpha-1 antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med (Maywood). 2010;235(6):700-709. doi: https://doi.org/10.1258/ebm.2010.009297
51. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science. 2008;319(5865):916-919. doi: https://doi.org/10.1126/science.1141448
52. Hipp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 2019;20;421-435. doi: https://doi.org/10.1038/s41580-019-0101-y
53. Sala AJ, Bott LC, Morimoto RI. Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol 2017;216(5):1231-1241. doi: https://doi.org/10.1083/jcb.201612111
54. Devlin GL, Parfrey H, Tew DJ, Lomas DA, Bottomley SP. Prevention of polymerization of M and Z alpha-1 antitrypsin (alpha-1-AT) with trimethylamine N-oxide. Implications for the treatment of alpha-1-AT deficiency. Am J Respir Cell Mol Biol. 2001;24(6):727-732. doi: https://doi.org/10.1165/ajrcmb.24.6.4407
55. Burrows JA, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant alpha-1 antitrypsin (alpha-1 AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha-1 AT deficiency. Proc Natl Acad Sci U S A. 2000;97(4):1796-1801. doi: https://doi.org/10.1073/pnas.97.4.1796
56. Bouchecareilh M, Hutt DM, Szajner P, Flotte TR, Balch WE. Histone deacetylase inhibitor (HDACi) suberoylanilide hydroxamic acid (SAHA)-mediated correction of alpha-1 antitrypsin deficiency. J Biol Chem. 2012;287:38265-38278. doi: https://doi.org/10.1074/jbc.M112.404707
57. Parfrey H, Mahadeva R, Ravenhill NA, et al. Targeting a surface cavity of alpha-1 antitrypsin to prevent conformational disease. J Biol Chem. 2003;278:33060-33066. doi: https://doi.org/10.1074/jbc.M302646200
58. Mallya M, Phillips RL, Saldanha SA, et al. Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem. 2007;50(22):5357-5363. doi: https://doi.org/10.1021/jm070687z
59. Mahadeva R, Dafforn TR, Carrell RW, Lomas DA. 6-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerization. Implications for the prevention of Z alpha(1)-antitrypsin-related cirrhosis. J Biol Chem. 2002;277:6771-6774. doi: https://doi.org/10.1074/jbc.C100722200
60. Zhou A, Stein PE, Huntington JA, et al. How small peptides block and reverse serpin polymerisation. J Mol Biol. 2004;342(3):931-941. doi: https://doi.org/10.1016/j.jmb.2004.07.078
61. Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. 2009;78:147-176. doi: https://doi.org/10.1146/annurev.biochem.78.082107.133320
62. Motamedi-Shad N, Jagger AM, Liedtke M, et al. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J. 2016;473:3269-3290. doi: https://doi.org/10.1042/BCJ20160159
63. Ordonez A, Perez J, Tan L, et al. A single-chain variable fragment intrabody prevents intracellular polymerization of Z alpha-1 antitrypsin while allowing its antiproteinase activity. FASEB J. 2015;29(6):2667-2678. doi: https://doi.org/10.1096/fj.14-267351
64. Fra A, Cosmi F, Ordonez A, et al. Polymers of Z alpha-1 antitrypsin are secreted in cell models of disease. Eur Respir J. 2016;47(3):1005-1009. doi: https://doi.org/10.1183/13993003.00940-2015
65. Tan L, Dickens JA, DeMeo DL, et al. Circulating polymers in alpha-1 antitrypsin deficiency. Eur Respir J. 2014;43(5):1501-1504. doi: https://doi.org/10.1183/09031936.00111213
66. Mulgrew AT, Taggert CC, Lawless MW, et al. Z alpha-1 antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest. 2004;125(5):1952-1957. doi: https://doi.org/10.1378/chest.125.5.1952
67. Stiles KM, Sondhi D, Kaminsky SM, De BP, Rosenberg JB, Crystal RG. Intrapleural gene therapy for alpha-1 antitrypsin deficiency-related lung Disease. Chronic Obstr Pulm Dis. 2018;5(4):244-257. doi: https://doi.org/10.15326/jcopdf.5.4.2017.0160
68. Rosenfeld MA, Siegfried W, Yoshimura K, et al. Adenovirus-mediated transfer of a recombinant alpha-1 antitrypsin gene to the lung epithelium in vivo. Science. 1991;252:431-434. doi: https://doi.org/10.1126/science.2017680
69. Jaffe HA, Daniel C, Longenecker G, et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet. 1992;1:372-378. doi: https://doi.org/10.1038/ng0892-372
70. Garver R Jr, Chytil A, Courtney M, Crystal RG. Clonal gene therapy: transplanted mouse fibroblast clones express human alpha 1-antitrypsin gene in vivo. Science. 1987;237:762-764. doi: https://doi.org/10.1126/science.3497452
71. Kay MA, Baley P, Rothenberg S, et al. Expression of human alpha 1-antitrypsin in dogs after autologous transplantation of retroviral transduced hepatocytes. Proc Natl Acad Sci U S A. 1992;89(1):89-93. doi: https://doi.org/10.1073/pnas.89.1.89
72. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583-593. doi: https://doi.org/10.1128/CMR.00008-08
73. Chiuchiolo MJ, Crystal RG. Gene therapy for alpha-1 antitrypsin deficiency lung disease. Ann Am Thorac Soc. 2016;13(Suppl 4):S352-369. doi: https://doi.org/10.1513/AnnalsATS.201506-344KV
74. Mueller C, Gernoux G, Gruntman AM, et al. 5-Year expression and neutrophil defect repair after gene therapy in alpha-1 antitrypsin deficiency. Mol Ther. 2017;25(6):1387-1394. doi: https://doi.org/10.1016/j.ymthe.2017.03.029
75. Mueller C, Tang Q, Gruntman A, et al. Sustained miRNA-mediated knockdown of mutant AAT with simultaneous augmentation of wild-type AAT has minimal effect on global liver miRNA profiles. Mol Ther. 2012;20(3):590-600. doi: https://doi.org/10.1038/mt.2011.292
76. Guo S, Booten SL, Aghajan M, et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest. 2014;124(1):251-261. doi: https://doi.org/10.1172/JCI67968
77. Li C, Xiao P, Gray SJ, Weinberg MS, Samulski RJ. Combination therapy utilizing shRNA knockdown and an optimized resistant transgene for rescue of diseases caused by misfolded proteins. Proc Natl Acad Sci U S A. 2011;108:14258-14263. doi: https://doi.org/10.1073/pnas.1109522108
78. Turner AM, Stolk J, Bals R, et al. Hepatic-targeted RNA interference provides robust and persistent knockdown of alpha-1 antitrypsin levels in ZZ patients. J Hepatol. 2018;69(2):378-384. doi: https://doi.org/10.1016/j.jhep.2018.03.012
79. Pickar-Oliver A, Gersbach CA. The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20:490-507. doi: https://doi.org/10.1038/s41580-019-0131-5
80. Xu L, Xu L, Wang J, et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N Engl J Med. 2019;381:1240-1247. doi: https://doi.org/10.1056/NEJMoa1817426
81. Yin H, Xue W, Anderson DG. CRISPR-Cas: a tool for cancer research and therapeutics. Nat Rev Clin Onco. 2019;l(16):281-295. doi: https://doi.org/10.1038/s41571-019-0166-8
82. Tian X, Gut, Patel S, Bode AM, Lee M-H, Bong Z. eCRISPR/Cas9 - An evolving biological tool kit for cancer biology and oncology. NPJ Precis Oncol. 2019;3:8. doi: https://doi.org/10.1038/s41698-019-0080-7
83. Eid A, Mahfouz MM. Genome editing: the road of CRISPR/Cas9 from bench to clinic. Exp Mol Med 2016;48. doi: https://doi.org/10.1038/emm.2016.111
84. Song CQ, Wang D, Jiang T, et al. In vivo genome editing partially restores alpha-1 antitrypsin in a murine model of AAT deficiency. Hum Gene Ther. 2018;29(8):853-860. doi: https://doi.org/10.1089/hum.2017.225
85. Bjursell M, Porritt MJ, Ericson E, et al. Therapeutic genome editing with CRISPR/CAS9 in a humanized mouse model ameliorates alpha-1 antitrypsin deficiency phenotype. EBioMedicine. 2018;29:104-111. doi: https://doi.org/10.1016/j.ebiom.2018.02.015
86. Shen S, Sanchez ME, Blomenkamp K, et al. Amelioration of alpha-1 antitrypsin deficiency diseases with genome editing in transgenic mice. Hum Gene Ther. 2018;29(8):861-873. doi: https://doi.org/10.1089/hum.2017.227
87. Ding J, Yannam GR, Roy-Chowhury N, et al. Spontaneous hepatic repopulation in transgenic mice expressing mutant human alpha-1 antitrypsin by wild-type donor hepatocytes. J Clin Invest. 2011;121(5):1930-1934. doi: https://doi.org/10.1172/JCI45260
88. Saito K, Yoshikawa M, Ouji Y, et al. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells. World J Gastroenterol. 2006;12(42):6818-6827. doi: https://doi.org/10.3748/wjg.v12.i42.6818
89. Zhou QJ, Xiang L-X, Shao J-Z, et al. In vitro differentiation of hepatic progenitor cells from mouse embryonic stem cells induced by sodium butyrate. J Cell Biochem. 2007;100(1):29-42. doi: https://doi.org/10.1002/jcb.20970
90. Rashid ST, Corbineau S, Hannan N, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120(9):3127-3136. doi: https://doi.org/10.1172/JCI43122
91. Wilson AA, Ying L, Liesa M, et al. Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Reports. 2015;4(5):873-885. doi: https://doi.org/10.1016/j.stemcr.2015.02.021
92. Segeritz CP, Rashid ST, de Brito MC, et al. hiPSC hepatocyte model demonstrates the role of unfolded protein response and inflammatory networks in alpha-1 antitrypsin deficiency. J Hepatol. 2018;69(4):851-860. doi: https://doi.org/10.1016/j.jhep.2018.05.028
93. Yusa K, Rashid ST, Strick-Marchand H, et al. Targeted gene correction of alpha-1 antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478:391-394. doi: https://doi.org/10.1038/nature10424
94. Baligar P, Kochat V, Arindkar SK, et al. Bone marrow stem cell therapy partially ameliorates pathological consequences in livers of mice expressing mutant human alpha-1 antitrypsin. Hepatology. 2017;65(4):1319-1335. doi: https://doi.org/10.1002/hep.29027
95. Giacopuzzi E, Laffranchi M, Berardelli R, et al. Real-world clinical applicability of pathogenicity predictors assessed on SERPINA1 mutations in alpha-1 antitrypsin deficiency. Hum Mutat. 2018;39(9):1203-1213. doi: https://doi.org/10.1002/humu.23562
96. Karczewski KJ, Francioli LC, Tiao G, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019;531210. doi: https://doi.org/10.1101/531210
97. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203-209. doi: https://doi.org/10.1038/s41586-018-0579-z
98. Strange C, Monk R, Schwarz L, Walker D, Kumbhare S, Bieko T. The United States Alpha-1 Foundation Research Registry: genesis, impact and future. COPD. 2015;12(Suppl 1):42-45. doi: https://doi.org/10.3109/15412555.2015.1021914
99. Stockley RA. Antitrypsin Deficiency Assessment and Programme for Treatment (ADAPT): the United Kingdom Registry. COPD. 2015;2(Suppl 1):63-68. doi: https://doi.org/10.3109/15412555.2015.1021911
100. Green CE, Vayalapra S, Hampson JA, et al. PiSZ alpha-1 antitrypsin deficiency (AATD): pulmonary phenotype and prognosis relative to PiZZ AATD and PiMM COPD. Thorax. 2015;70(10):939-945. doi: https://doi.org/10.1136/thoraxjnl-2015-206906
101. Graham A, Kalsheker NA, Bamforth FJ, Newton CR, Markham AF. Molecular characterisation of two alpha-1-antitrypsin deficiency variants: proteinase inhibitor (Pi) Null(Newport) (Gly115----Ser) and (Pi) Z Wrexham (Ser-19----Leu). Hum Genet. 1990;85:537-540. doi: https://doi.org/10.1007/BF00194233
102. Matamala N, Lara B, Gomez-Mariano G, et al. Characterization of novel missense variants of SERPINA1 gene causing alpha-1 antitrypsin deficiency. Am J Respir Cell Mol Biol. 2018;58(6):706-716. doi: https://doi.org/10.1165/rcmb.2017-0179OC
103. Mahadeva R, Gaillard M, Pillay V, Halkas A, Lomas, D. Characterization of a new variant of alpha(1)-antitrypsin E(Johannesburg) (H15N) in association with asthma. Hum Mutat. 2001;17(2):156. doi: https://doi.org/10.1002/1098-1004(200102)17:2<156::AID-HUMU19>3.0.CO;2-Y
104. Mahadeva R, Change W-SW, Dafforn TR, et al. Heteropolymerization of S, I, and Z alpha-1 antitrypsin and liver cirrhosis. J Clin Invest. 1999;103(7):999-1006. doi: https://doi.org/10.1172/JCI4874
105. Baur X, Bencze K. Study of familial alpha-1 proteinase inhibitor deficiency including a rare proteinase inhibitor phenotype (IZ). I. Alpha-1-phenotyping and clinical investigations. Respiration. 1987;51:188-195. doi: https://doi.org/10.1159/000195201
106. Zorzetto M, Russi E, Senn O, et al. SERPINA1 gene variants in individuals from the general population with reduced alpha-1 antitrypsin concentrations. Clin Chem. 2008;54(8):331-1338. doi: https://doi.org/10.1373/clinchem.2007.102798
107. Takahashi H, Nukiwa T, Satoh K, et al. Characterization of the gene and protein of the alpha-1 antitrypsin "deficiency" allele M procida. J Biol Chem. 1988;263(30):15528-15534.
108. Prins J, van der Meijden BB, Kraaijenhagen RJ, Wielders JP. Inherited chronic obstructive pulmonary disease: new selective-sequencing workup for alpha-1 antitrypsin deficiency identifies 2 previously unidentified null alleles. Clin Chem. 2008;54(1):101-107. doi: https://doi.org/10.1373/clinchem.2007.095125
109. Kueppers F, Dunbrack RL, Jr., Kim J, Sanders CL. Protein modeling to assess the pathogenicity of rare variants of SERPINA1 in patients suspected of having alpha-1 antitrypsin Deficiency. BMC Med Genet. 2019;20:125. doi: https://doi.org/10.1186/s12881-019-0852-5
110. Suh-Lailam BB, Procter M, Krautscheid P, et al. Challenging identification of a novel PiISF and the rare PiMmaltonZ alpha-1 antitrypsin deficiency variants in two patients. Am J Clin Pathol. 2014;141(5):742-746. doi: https://doi.org/10.1309/AJCPR7EIQS8PIMLV
111. Lara B, Martinez-Delgado B, Torres ML, Marin-Arguedas S, Bustamante A, Miravittles M. Alpha-1 antitrypsin deficiency associated with the Mattawa variant. Arch Bronconeumol. 2013;49(12):548-550. doi: https://doi.org/10.1016/j.arbres.2013.05.004
112. Curiel DT, Holmes MD, Okayama H, et al. Molecular basis of the liver and lung disease associated with the alpha-1 antitrypsin deficiency allele Mmalton. J Biol Chem. 1989;264(23):13938-13945.
113. Allen MB, Ward AM, Perks WH. Alpha-1 antitrypsin deficiency due to MMaltonZ phenotype: case report and family study. Thorax. 1986;41:568-570. doi: https://doi.org/10.1136/thx.41.7.568
114. Curiel DT, Vogelmeier C, Hubbard RC, Stier LE, Crystal RG. Molecular basis of alpha-1 antitrypsin deficiency and emphysema associated with the alpha-1 antitrypsin M mineral springs allele. Mol Cell Biol. 1990;10(1):47-56. doi: https://doi.org/10.1128/MCB.10.1.47
115. Faber JP, Poller W, Weidinger S, et al. Identification and DNA sequence analysis of 15 new alpha-1 antitrypsin variants, including two PI*Q0 alleles and one deficient PI*M allele. Am J Hum Genet. 1994;55(6):1113-1121.
116. Poller W, Merklein F, Schneider -Rasp S, et al. Molecular characterisation of the defective alpha-1 antitrypsin alleles PI Mwurzburg (Pro369Ser), Mheerlen (Pro369Leu), and Q0lisbon (Thr68Ile). Eur J Hum Genet. 1999;7:321-331. doi: https://doi.org/10.1038/sj.ejhg.5200304
117. Miranda E, Ferrarotti I, Berardelli R, et al. The pathological Trento variant of alpha-1-antitrypsin (E75V) shows nonclassical behaviour during polymerization. FEBS J. 2017;284(13):2110-2126 doi: https://doi.org/10.1111/febs.14111
118. de Seynes C, Ged C, deVernuil H, Chollet N, Balduyck M, Raherison C. Identification of a novel alpha-1 antitrypsin variant. Respir Med Case Rep. 2017;20:64-67. doi: https://doi.org/10.1016/j.rmcr.2016.11.008
119. Lovegrove JU, Jeremiah S, Gillet GT, Temple IK, Povey S, Whitehouse DB. A new alpha-1 antitrypsin mutation, Thr-Met 85, (PI Zbristol) associated with novel electrophoretic properties. Ann Hum Genet. 1997;61(5):385-391. doi: https://doi.org/10.1046/j.1469-1809.1997.6150385.x
120. Bates KJ, Puxley M, Hill M, et al. A patient with the rare alpha-1 antitrypsin variant (Z)bristol in compound heterozygosity with the Z mutation. Ann Clin Biochem. 50:618-621. doi: https://doi.org/10.1177/0004563213484303
121. DeMeo DL, Silverman EK. Alpha-1 antitrypsin deficiency. 2: genetic aspects of alpha (1)-antitrypsin deficiency: phenotypes and genetic modifiers of emphysema risk. Thorax. 2004;59(3):259-264. doi: https://doi.org/10.1136/thx.2003.006502
122. Frazier GC, Siewertsen MA, Hofker MH, Brubacher MG, Cox DW. A null deficiency allele of alpha-1 antitrypsin, QOludwigshafen, with altered tertiary structure. J Clin Invest. 1990;86(6):1878-188. doi: https://doi.org/10.1172/JCI114919
123. Stoller JK, Aboussouan LS. Alpha-1 antitrypsin deficiency. Lancet. 2005;365(9478):2225-2236. doi: https://doi.org/10.1016/S0140-6736(05)66781-5
124. Ferrarotti I, Carroll TP, Ottaviani S, et al. Identification and characterisation of eight novel SERPINA1 Null mutations. Orphanet J Rare Dis. 2014;9:172. doi: https://doi.org/10.1186/s13023-014-0172-y
125. Bamforth FJ, Kalsheker NA. Alpha-1 antitrypsin deficiency due to Pi null: clinical presentation and evidence for molecular heterogeneity. J Med Genet. 1988;25(2):83-87. doi: https://doi.org/10.1136/jmg.25.2.83
126. Silva D, Oliveira MJ, Guimares M, Lima R, Games S, Seixas S. Alpha-1 antitrypsin (SERPINA1) mutation spectrum: three novel variants and haplotype characterization of rare deficiency alleles identified in Portugal. Respir Med. 2016;116:8-18. doi: https://doi.org/10.1016/j.rmed.2016.05.002
127. Lodewyckx L, Vanderyer C, Vandervorst C, Van Steenbergen W, Raus J, Michrels L. Mutation detection in the alpha-1 antitrypsin gene (PI) using denaturing gradient gel electrophoresis. Hum Mutat. 2001;18(3):243-250. doi: https://doi.org/10.1002/humu.1180
128. Joly P, Francina P, Lacan J, Heraut J, Chapuis-Cellier C. Place de l'analyse génotypique en complément du phénotype et du dosage de l'α-1 antitrypsine sérique. Ann Biol Clin (Paris). 2011;69:571-576. doi: https://doi.org/10.1684/abc.2011.0613
129. Joly P, Lacan P, Chapuis-Cellier C, Garcia C, Bererd M, Fraancina A. Molecular characterization of 7 new alpha-1 antitrypsin (A1AT) variants including two with an associated deficient phenotype. Clin Chim Acta. 2014;427:21-22. doi: https://doi.org/10.1016/j.cca.2013.09.017
130. Okayama H, Brantly M, Holmes M, Crystal RG. Characterization of the molecular basis of the alpha-1 antitrypsin F allele. Am J Hum Genet. 1991;48:1154-1158.
131. Ringenbach MR, Banta E, Snyder MR, Craig TJ, Ishmael FT. A challenging diagnosis of alpha-1 antitrypsin deficiency: identification of a patient with a novel F/Null phenotype. Allergy Asthma Clin Immunol. 2011;7:18. doi: https://doi.org/10.1186/1710-1492-7-18
132. Medicina D, Montani N, Fra AM, et al. Molecular characterization of the new defective P(brescia) alpha-1 antitrypsin allele. Hum Mutat. 2009;30(8):E771-781. doi: https://doi.org/10.1002/humu.21043
133. Bornhorst JA, Calderon FRO, Procter M, Tang W, Ashwood ER, Mao R. Genotypes and serum concentrations of human alpha-1 antitrypsin "P" protein variants in a clinical population. J Clin Pathol. 2007;60(10):1124-1128. doi: https://doi.org/10.1136/jcp.2006.042762
134. Graham A, Kalsheker NA, Newton CR, Bamforth FJ, Powell SJ, Markham AT. Molecular characterisation of three alpha-1 antitrypsin deficiency variants: proteinase inhibitor (Pi) nullcardiff (Asp256----Val); PiMmalton (Phe51----deletion) and PiI (Arg39----Cys). Hum Genet. 1989;84:55-58. doi: https://doi.org/10.1007/BF00210671
135. Oliveira MJ, Seixas S, Ladeira I, et al. Alpha-1 antitrypsin deficiency caused by a novel mutation (p.Leu263Pro): Pi*ZQ0gaia - Q0gaia allele. Rev Port Pneumol. 2015;21(6):341-343. doi: https://doi.org/10.1016/j.rppnen.2015.07.002
136. Curiel DT, Chytil A, Courtney M, Crystal RG. Serum alpha-1 antitrypsin deficiency associated with the common S-type (Glu264----Val) mutation results from intracellular degradation of alpha-1 antitrypsin prior to secretion. J Biol Chem. 1989;264:10477-10486.
137. Ferrarotti I, Thun GA, Zorzetto M, et al. Serum levels and genotype distribution of alpha-1 antitrypsin in the general population. Thorax. 2012;67(8):669-674. doi: https://doi.org/10.1136/thoraxjnl-2011-201321
138. Ljujic M, Divac Rankov A, Kojic S, Miranda E, Radojkovic D. Functional analysis of novel alpha-1 antitrypsin variants G320R and V321F. Mol Biol Rep. 2014;41:6133-6141. doi: https://doi.org/10.1007/s11033-014-3492-z
139. Greene DN, Procter M, Krautscheid P, Mao R, Lyon E, Grenache DG. Alpha-1 antitrypsin deficiency in fraternal twins born with familial spontaneous pneumothorax. Chest. 2012;141(1):239-241. doi: https://doi.org/10.1378/chest.11-0104
140. Arora NK, Arora S, Ahuja A, et al. Alpha-1 antitrypsin deficiency in children with chronic liver disease in North India. Indian Pediatr. 2010;47:1015-1023. doi: https://doi.org/10.1007/s13312-010-0174-3
141. Miranda E, Perez J, Ekeowa UI, et al. A novel monoclonal antibody to characterize pathogenic polymers in liver disease associated with alpha-1 antitrypsin deficiency. Hepatology. 2010;52(3):1078-1088. doi: https://doi.org/10.1002/hep.23760
142. Kidd VJ, Wallace RB, Itakura K, Woo SL. Alpha-1 antitrypsin deficiency detection by direct analysis of the mutation in the gene. Nature. 1983;304:230-234. doi: https://doi.org/10.1038/304230a0
143. Seixas S, Lopes AI, Rocha J, et al. Association between the defective Pro369Ser mutation and in vivo intrahepatic alpha-1 antitrypsin accumulation. J Med Genet. 2001;38(7):472-474. doi: https://doi.org/10.1136/jmg.38.7.472
144. Hernandez Perez JM, Ramos Diaz R, Fumero Garcia S, Perez Perez JA. Description of alpha-1 antitrypsin deficiency associated with PI*Q0ourem allele in La Palma Island (Spain) and a genotyping assay for its detection. Arch Bronconeumol. 2015;51(1):e1-3. doi: https://doi.org/10.1016/j.arbres.2014.01.011
145. Vidaud D, Emmerich J, Alhenc-Gelas M, Yvart J, Fiessinger N, Aiach M. Met 358 to Arg mutation of alpha-1 antitrypsin associated with protein C deficiency in a patient with mild bleeding tendency. J Clin Invest. 1992;89(5):1537-1543. doi: https://doi.org/10.1172/JCI115746
146. Seyama K, Nukiwa T, Takabe K, Takahashi H, Miyake K, Kira S. Siiyama (serine 53 (TCC) to phenylalanine 53 (TTC)). A new alpha-1 antitrypsin-deficient variant with mutation on a predicted conserved residue of the serpin backbone. J Biol Chem. 1991;266(19):12627-12632.
147. Fra AM, Gooptu B, Ferrarotti I, et al. Three new alpha-1 antitrypsin deficiency variants help to define a C-terminal region regulating conformational change and polymerization. PLoS One. 2012;7:e38405. doi: https://doi.org/10.1371/journal.pone.0038405
148. Lewis JH, Iammarino RM, Spero JA, Hasiba U. Antithrombin Pittsburgh: an alpha1-antitrypsin variant causing hemorrhagic disease. Blood. 1978;51:129-137. doi: https://doi.org/10.1182/blood.V51.1.129.129
149. Owen MC, Brennan SO, Lewis JH, Carrell RW. Mutation of antitrypsin to antithrombin. Alpha-1 antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med. 1983;309:694-698. doi: https://doi.org/10.1056/NEJM198309223091203
150. Emmerich J, Alhenc-Gelas M, Gandrille S, Guicket C, Fiessinger JN, Hiach M. Mechanism of protein C deficiency in a patient with arginine 358 alpha-1 antitrypsin (Pittsburgh mutation): role in the maintenance of hemostatic balance. J Lab Clin Med. 1995;125(4):531-539.
151. Gooptu B, Dickens JA, Lomas DA. The molecular and cellular pathology of alpha (1)-antitrypsin deficiency. Trends Mol Med. 2014;20:116-127. doi: https://doi.org/10.1016/j.molmed.2013.10.007
152. Gooptu B, Lomas DA. Misfolding and polymerization of alpha-1 antitrypsin: conformational pathology and therapeutic targeting. In: Wanner A, Sandhous RA, eds. Alpha-1 Antitrypsin: Role in Health and Disease. Springer International Publishing; 2016:31-52.
153. Lomas DA, Finch JT, Seyama K, Nukiwa T, Carrell RW. Alpha-1 antitrypsin Siiyama (Ser53-->Phe). Further evidence for intracellular loop-sheet polymerization. J Biol Chem. 1993;268:15333-15335.
154. Lomas DA, Elliott PR, Sidhar SK, et al. Alpha-1 antitrypsin Mmalton (Phe52-deleted) forms loop-sheet polymers in vivo. Evidence for the C sheet mechanism of polymerization. J Biol Chem 1995;270:6864-16870. doi: https://doi.org/10.1074/jbc.270.28.16864
155. Wardell MR, et al. Preparative induction and characterization of L-antithrombin: a structural homologue of latent plasminogen activator inhibitor-1. Biochemistry. 1997;36:13133-13142. doi: https://doi.org/10.1021/bi970664u
156. Yamasaki M, Sendall TJ, Pearce MC, Whisstock JC, Huntington JA. Molecular basis of alpha-1 antitrypsin deficiency revealed by the structure of a domain-swapped trimer. EMBO Rep. 2011;12(10):1011-1017. doi: https://doi.org/10.1038/embor.2011.171
157. Accurso FJ, Rowe SM, Clancy JP, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363(21):1991-2003. doi: https://doi.org/10.1056/NEJMoa0909825
158. Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros. 2015;14(6):687-699. doi: https://doi.org/10.1016/j.jcf.2015.09.006
159. Han ST, Rab A, Pellicore MJ, et al. Residual function of cystic fibrosis mutants predicts response to small molecule CFTR modulators. JCI Insight. 2018;3(14):e121159. doi: https://doi.org/10.1172/jci.insight.121159
160. Keating D. Marigowda G, Burr L, et al. VX-445-Tezacaftor-Ivacaftor in patients with cystic gibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379:1612-1620. doi: https://doi.org/10.1056/NEJMoa1807120
161. Wang C, Balch WE. Managing the adaptive proteostatic landscape: restorying resilience in alpha-1 antitrypsin deficiency. In: Wanner A, Sandhous RA, eds. Alpha-1 Antitrypsin: Role in Health and Disease. Springer International Publishing; 2016:53-83.
162. Ramsey BW, Davies J, McElvaney G, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663-1672. doi: https://doi.org/10.1056/NEJMoa1105185
163. Wainwright CE, Elborn S, Ramsey BW, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373:220-231. doi: https://doi.org/10.1056/NEJMoa1409547
164. Rowe SM, Rowe SM, Daines C, Ringshausen FC, et al. Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017;377:2024-2035. doi:https://doi.org/10.1056/NEJMoa1709847
165. Davies JC, Moskowitz SM, Brown C, et al. VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379:1599-1611. doi: https://doi.org/10.1056/NEJMoa1807119
166. Arenas F, Garcia-Ruiz C, Fernandez-Checa JC. Intracellular cholesterol trafficking and impact in neurodegeneration. Front Mol Neurosci. 2017;10:382. doi: https://doi.org/10.3389/fnmol.2017.00382
167. Vanier MT. Niemann-Pick diseases. Handb Clin Neurol. 2013;113:1717-1721. doi: https://doi.org/10.1016/B978-0-444-59565-2.00041-1
168. Gershenson A, Gierasch LM, Pastore A, Radford SE. Energy landscapes of functional proteins are inherently risky. Nat Chem Biol. 2014;10:884-891. doi: https://doi.org/10.1038/nchembio.1670
169. National Institutes of Health (NIH). All of Me Research Program. NIH website. Updated 2020. Accessed July 2020. https://allofus.nih.gov/