1. Stockley RA, Turner AM. Alpha-1 antitrypsin deficiency: clinical variability, assessment, and treatment. Trends in molecular medicine. 2014;20(2):105-115. doi: https://doi.org/10.1016/j.molmed.2013.11.006
2. Oxford English Dictionary. Oxford: Oxford University Press; 2019. Accessed July 2020. https://www.oed.com/.
3. Allen L, Williams J, Townsend N, et al. Socioeconomic status and non-communicable disease behavioral risk factors in low-income and lower-middle-income countries: a systematic review. Lancet Glob Health. 2017;5(3):e277-e89. doi: https://doi.org/10.1016/S2214-109X(17)30058-X
4. Stockley RA. Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med. 1999;160(5 Pt 2):S49-52. doi: https://doi.org/10.1164/ajrccm.160.supplement_1.13
5. Ruparelia P, Szczepura KR, Summers C, et al. Quantification of neutrophil migration into the lungs of patients with chronic obstructive pulmonary disease. Eur J Nucl Med Mol. Imaging. 2011;38(5):911-919. doi: https://doi.org/10.1007/s00259-010-1715-7
6. Sapey E, Stockley JA, Greenwood H, et al. Behavioral and structural differences in migrating peripheral neutrophils from patients with COPD. Am J Respir Crit Care Med. 2011;183(9):1176-1186.
7. Moriyama C, Betsuyaku T, Ito Y, et al. Aging enhances susceptibility to cigarette smoke-induced inflammation through bronchiolar chemokines. Am J Respir Cell Mol Biol. 2009;42(3):304-311. doi: https://doi.org/10.1165/rcmb.2009-0025OC
8. Kohansal R, Martinez-Camblar P, Agusti A, Buist AS, Mannino DM, Soriano JB. The natural history of chronic airflow obstruction revisited: an analysis of the Framingham offspring cohort. Am J Respir Crit Care Med. 2009;180:3-10. doi: https://doi.org/10.1164/rccm.200901-0047OC
9. Stockley RA, Afford SC. The immunological assessment of alpha-1 antitrypsin with reference to its function in bronchial secretions. Clin Sci (Lond). 1983;65(4):373-81. doi: https://doi.org/10.1042/cs0650373
10. Alam S, Li Z, Janciauskiene S, Mahadeva R. Oxidation of Z alpha-1 antitrypsin by cigarette smoke induces polymerization: a novel mechanism of early-onset emphysema. Am J Respir Cell Mol Biol. 2011;45(2):261-269. doi: https://doi.org/10.1165/rcmb.2010-0328OC
11. Mahadeva R, Atkinson C, Li Z, et al. Polymers of Z alpha-1 antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am J Pathol. 2005;166(2):377-386. doi: https://doi.org/10.1016/S0002-9440(10)62261-4
12. Wood AM, Simmonds MJ, Bayley DL, Newby PR, Gough SC, Stockley RA. The TNFalpha gene relates to clinical phenotype in alpha-1-antitrypsin deficiency. Respir Res. 2008;9:52. doi: https://doi.org/10.1186/1465-9921-9-52
13. O'Brien ME, Pennycooke K, Carroll TP, et al. The impact of smoke exposure on the clinical phenotype of alpha-1 antitrypsin deficiency in Ireland: exploiting a national registry to understand a rare disease. COPD. 2015;12 (Suppl 1):2-9. doi: https://doi.org/10.3109/15412555.2015.1021913
14. Zhu L, Ni Z, Luo X, et al. The outcome and the influencing factors of the age of onset in post-mortem of chronic bronchitis patients: a retrospective study. Int J Chron Obstruct Pulmon Dis. 2018;13:645-652. doi: https://doi.org/10.2147/COPD.S157084
15. Ferrarotti I, Thun GA, Zorzetto M, et al. Serum levels and genotype distribution of alpha-1 antitrypsin in the general population. Thorax. 2012;67(8):669-674. doi: https://doi.org/10.1136/thoraxjnl-2011-201321
16. Hersh CP, Dahl M, Ly NP, Berkey CS, Nordestgaard BG, Silverman EK. Chronic obstructive pulmonary disease in alpha-1 antitrypsin PI MZ heterozygotes: a meta-analysis. Thorax. 2004;59(10):843-849. doi: https://doi.org/10.1136/thx.2004.022541
17. Molloy K, Hersh CP, Morris VB, et al. Clarification of the risk of chronic obstructive pulmonary disease in alpha-1 antitrypsin deficiency PiMZ heterozygotes. Am J Respir Crit Care Med. 2014;189(4):419-427. doi: https://doi.org/10.1164/rccm.201311-1984OC
18. Green CE, Vayalapra S, Hampson JA, Mukherjee D, Stockley RA, Turner AM. PiSZ alpha-1 antitrypsin deficiency (AATD): pulmonary phenotype and prognosis relative to PiZZ AATD and PiMM COPD. Thorax. 2015;70(10):939-945. doi: https://doi.org/10.1136/thoraxjnl-2015-206906
19. Hutchison DC, Cooper D. Alpha-1 antitrypsin deficiency: smoking, decline in lung function and implications for therapeutic trials. Respir Med. 2002;96(11):872-880. doi: https://doi.org/10.1053/rmed.2002.1381
20. Seersholm N, Kok-Jensen A, Dirksen A. Decline in FEV1 among patients with severe hereditary alpha-1 antitrypsin deficiency type PiZ. Am J Respir Crit Care Med. 1995;152(6 Pt 1):1922-1925. doi: https://doi.org/10.1164/ajrccm.152.6.8520756
21. Stockley RA, Edgar RG, Pillai A, Turner AM. Individualized lung function trends in alpha-1 antitrypsin deficiency: a need for patience in order to provide patient centered management? Int J Chron Obstruct Pulmon Dis. 2016;11:1745-1756. doi: https://doi.org/10.2147/COPD.S111508
22. Castaldi PJ, DeMeo D, Kent DM, et al. Development of predictive models for airflow obstruction in alpha-1 antitrypsin deficiency. Am J Epidemiol. 2009;170:1005-1013. doi: https://doi.org/10.1093/aje/kwp216
23. Fahndrich S, Bernhard N, Lepper PM, Vogelmeier C, Seibert M, Wagenpfeil Sea. Exacerbations and duration of smoking abstinence are associated with the annual loss of FEV1 in individuals with PiZZ alpha-1 antitrypsin deficiency. Respir Med. 2017;129:8-15. doi: https://doi.org/10.1016/j.rmed.2017.05.011
24. Mayer AS, Stoller JK, Vedal S, et al. Risk factors for symptom onset in PI*Z alpha-1 antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis. 2006;1(4):485-492. doi: https://doi.org/10.2147/copd.2006.1.4.485
25. Silverman EK, Pierce JA, Province MA, Rao DC, Campbell EJ. Variability of pulmonary function in alpha-1 antitrypsin deficiency: clinical correlates. Ann Intern Med. 1989;111(12):982-991. doi: https://doi.org/10.7326/0003-4819-111-12-982
26. Hiller AM, Piitulainen E, Jehpsson L, Tanash H. Decline in FEV1 and hospitalized exacerbations in individuals with severe alpha-1 antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis. 2019;14:1975-1983. doi: https://doi.org/10.2147/COPD.S195847
27. Bernhard N, Lepper PM, Vogelmeier C, et al. Deterioration of quality of life is associated with the exacerbation frequency in individuals with alpha-1 antitrypsin deficiency - analysis from the German Registry. Int J Chron Obstruct Pulmon Dis. 2017;12:1427-1437. doi: https://doi.org/10.2147/COPD.S130925
28. Bernhard N, Lepper PM, Vogelmeier C, et al. Intensive smoking diminishes the differences in quality of life and exacerbation frequency between the alpha-1 antitrypsin deficiency genotypes PiZZ and PiSZ. Respir Med. 2017;130:1-8. doi: https://doi.org/10.1016/j.rmed.2017.07.004
29. Pompe E, Strand M, van Rikxoort EM, et al. Five-year progression of emphysema and air trapping at CT in smokers with and those without chronic obstructive pulmonary disease: Results from the COPDGene study. Radiology. 2020;295(1):218-126. doi: https://doi.org/10.1148/radiol.2020191429
30. Criner RN, Hatt CR, Galban CJ, et al. Relationship between diffusion capacity and small airway abnormality in COPDGene. Respir Res. 2019;20(1):269. doi: https://doi.org/10.1186/s12931-019-1237-1
31. Tan WC, Bourbeau J, Aaron SD, et al. The effects of marijuana smoking on lung function in older people. Eur Respir J. 2019;54(6):1900826. doi: https://doi.org/10.1183/13993003.00826-2019
32. Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA. Outdoor air pollution is associated with disease severity in alpha-1 antitrypsin deficiency. Eur Respir J. 2009;34(2);346-353. doi:https://doi.org/10.1183/09031936.00087908
33. Devlin RB, McDonnell WF, Becker S, et al. Time-dependent changes of inflammatory mediators in the lungs of humans exposed to 0.4 ppm ozone for 2 hr: a comparison of mediators found in bronchoalveolar lavage fluid 1 and 18 hr after exposure. Toxicol Appl Pharmacol. 1996;138(1):176-185. doi: https://doi.org/10.1006/taap.1996.0111
34. Nadziejko C, Finkelstein I, Balmes JR. Contribution of secretory leukocyte proteinase inhibitor to the antiprotease defense system of the peripheral lung: effect of ozone-induced acute inflammation. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1592-1598. doi: https://doi.org/10.1164/ajrccm.152.5.7582300
35. Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA. Outdoor air pollution is associated with rapid decline of lung function in alpha-1 antitrypsin deficiency. Occup Environ Med. 2010;67(8):556-561. doi: https://doi.org/10.1136/oem.2009.047589
36. Mehta AJ, Thun GA, Imboden M, et al. Interactions between SERPINA1 PiMZ genotype, occupational exposure and lung function decline. Occup Environ Med. 2014;71(4):234-240. doi: https://doi.org/10.1136/oemed-2013-101592
37. Banauch GI, Brantly M, Izbicki G, et al. Accelerated spirometric decline in New York City firefighters with alpha (1)-antitrypsin deficiency. Chest. 2010;138(5):1116-1124. doi: https://doi.org/10.1378/chest.10-0187
38. Semple SE, Dick F, Cherrie JW. Exposure assessment for a population-based case-control study combining a job-exposure matrix with interview data. Scand J Work Environ Health. 2004;30(3):241-248. doi: https://doi.org/10.5271/sjweh.785
39. U.S. Bureau of Labor Statistics. Standard occupational classification. Updated 2018. Accessed July 2020. https://www.bls.gov/soc/
40. Mayer AS, Stoller JK, Bucher-Bartelson B, et al. Occupational exposure risks in individuals with PI*Z alpha (1)-antitrypsin deficiency. Am J Respir Crit Care Med. 2000;162(2 Pt 1):553-558. doi: https://doi.org/10.1164/ajrccm.162.2.9907117
41. Sigsgaard T, Brandslund I, Omland O, et al. S and Z alpha-1 antitrypsin alleles are risk factors for bronchial hyperresponsiveness in young farmers: an example of gene/environment interaction. Eur Respir J. 2000;16(1):50-55. doi: https://doi.org/10.1034/j.1399-3003.2000.16a09.x
42. Piitulainen E, Tornling G, Eriksson S. Environmental correlates of impaired lung function in non-smokers with severe alpha-1 antitrypsin deficiency (PiZZ). Thorax. 1998;53(11):939-943. doi: https://doi.org/10.1136/thx.53.11.939
43. Vallieres E, Pintos J, Parent ME, Siemiatycki J. Occupational exposure to wood dust and risk of lung cancer in two population-based case-control studies in Montreal, Canada. Environ Health. 2015;14:1. doi: https://doi.org/10.1186/1476-069X-14-1
44. Eduard W, Sandven P, Levy F. Serum IgG antibodies to mold spores in two Norwegian sawmill populations: relationship to respiratory and other work-related symptoms. Am J Ind Med. 1993;24(2):207-222. doi: https://doi.org/10.1002/ajim.4700240207
45. Dahlqvist M, Ulfvarson U. Acute effects on forced expiratory volume in one second and longitudinal change in pulmonary function among wood trimmers. Am J Ind Med. 1994;25(4):551-558. doi: https://doi.org/10.1002/ajim.4700250409
46. Wood AM, Semple S, Ayres JG, Stockley RA. Occupational exposures in AATD. Eur Respir J. 2008;32(Suppl 52):3825. Accessed July 2020. https://www.ers-education.org/events/international-congress/berlin-2008.aspx?idParent=47715.
47. Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA. Outdoor air pollution is associated with rapid decline of lung function in alpha-1-antitrypsin deficiency. Occup Environ Med. 2010;67(8):556-561. doi: https://doi.org/10.1136/oem.2009.047589
48. Lafuente MJ, Casterad X, Laso N, et al. Pi*S and Pi*Z alpha 1 antitrypsin polymorphism and the risk for asbestosis in occupational exposure to asbestos. Toxicol Lett. 2002;136(1):9-17. doi: https://doi.org/10.1016/S0378-4274(02)00283-7
49. Banerjee D, Khair OA, Honeybourne D. Impact of sputum bacteria on airway inflammation and health status in clinical stable COPD. Eur Respir J. 2004;23(5):685-691. doi: https://doi.org/10.1183/09031936.04.00056804
50. Marin A, Monso E, Garcia M, et al. Variability and effects of bronchial colonisation in patients with moderate COPD. Eur Respir J. 2010;35(2):295-302. doi: https://doi.org/10.1183/09031936.00126808
51. Hill AT, Campbell EJ, Bayley DL, Hill SL, Stockley RA. Evidence for excessive bronchial inflammation during an acute exacerbation of chronic obstructive pulmonary disease in patients with alpha(1) antitrypsin deficiency (PiZ). Am J Respir Crit Care Med. 1999;160(6):1968-1975. doi: https://doi.org/10.1164/ajrccm.160.6.9904097
52. Hampson JA, Stockley RA, Turner AM. Free light chains: potential biomarkers and predictor of mortality in alpha-1 antitrypsin deficiency and COPD. Respir Res. 2016;17:34. doi: https://doi.org/10.1186/s12931-016-0348-1
53. Wood AM, Bassford C, Webster D, , et al. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax. 2011;66(3):205-210. doi: https://doi.org/10.1136/thx.2010.140921
54. Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016;47(4):1082-1092. doi: https://doi.org/10.1183/13993003.01406-2015
55. Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS One. 2011;6(2):e16384. doi: https://doi.org/10.1371/journal.pone.0016384
56. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578. doi: https://doi.org/10.1371/journal.pone.0008578
57. Rodrigo-Troyano A, Suarez-Cuartin G, Peiro M, et al. Pseudomonas aeruginosa resistance patterns and clinical outcomes in hospitalized exacerbations of COPD. Respirology. 2016;21(7):1235-1242. doi: https://doi.org/10.1111/resp.12825
58. Regev A, Guaqueta C, Molina EG, et al. Does the heterozygous state of alpha-1 antitrypsin deficiency have a role in chronic liver diseases? Interim results of a large case-control study. J Pediatr Gastroenterol Nutr. 2006;43(Suppl 1):S30-35. doi: https://doi.org/10.1097/01.mpg.0000226387.56612.1e