1. Gadek JE, Fells GA, Zimmerman RL, Rennard SI, Crystal RG. Antielastases of the human alveolar structures. implications for the protease-antiprotease theory of emphysema. J Clin Invest. 1981;68(4):889-898. doi: https://doi.org/10.1172/JCI110344
2. Eriksson S. Pulmonary emphysema and alpha1‐antitrypsin deficiency. Acta Medica Scandinavica. 1964;175(2):197-205. doi: https://doi.org/10.1111/j.0954-6820.1964.tb00567.x
3. Parr DG, Guest PG, Reynolds JH, Dowson LJ, Stockley RA. Prevalence and impact of bronchiectasis in α-1 antitrypsin deficiency. Am J Respir Crit Care Med. 2007;176(12):1215-1221. doi: https://doi.org/10.1164/rccm.200703-489OC
4. Dowson LJ, Guest PJ, Stockley RA. The relationship of chronic sputum expectoration to physiologic, radiologic, and health status characteristics in α-1 antitrypsin deficiency (PiZ). Chest. 2002;122(4):1247-1255. doi: https://doi.org/10.1378/chest.122.4.1247
5. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease, 2020 report. GOLD website. Published 2019. Accessed 2020. https://www.goldcopd.org
6. Anthonisen NR, Manfreda J, Warren CP, Hershfield ES, Harding GK, Nelson NA. Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med. 201;106(2):196-204. doi: https://doi.org/10.7326/0003-4819-106-2-196
7. Vijayasaratha K, Stockley RA. Reported and unreported exacerbations of COPD: analysis by diary cards. Chest. 2008;133(1):34-41. doi: https://doi.org/10.1378/chest.07-1692
8. Fahndrich S, Bernhard N, Lepper PM, et al. Exacerbations and duration of smoking abstinence are associated with the annual loss of FEV1 in individuals with PiZZ alpha-1-antitrypsin deficiency. Respir Med. 2017;129:8-15. doi: https://doi.org/10.1016/j.rmed.2017.05.011
9. Soler-Cataluña JJ, Martínez-García MÁ, Román Sánchez P, Salcedo E, Navarro M, Ochando R. Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005;60(11):925-931. doi: https://doi.org/10.1136/thx.2005.040527
10. Bernhard N, Lepper PM, Vogelmeier C, et al. Deterioration of quality of life is associated with the exacerbation frequency in individuals with alpha-1 antitrypsin deficiency - analysis from the German registry. Int J Chron Obstruct Pulmon Dis. 2017;12:1427-1437. doi: https://doi.org/10.2147/COPD.S130925
11. Edgar RG, Patel M, Bayliss S, Crossley D, Sapey E, Turner AM. Treatment of lung disease in alpha-1 antitrypsin deficiency: a systematic review. Int J Chron Obstruct Pulmon Dis. 2017;12:1295-1308. doi: https://doi.org/10.2147/COPD.S130440
12. Hill AT, Campbell EJ, Bayley DL, Hill SL, Stockley RA. Evidence for excessive bronchial inflammation during an acute exacerbation of chronic obstructive pulmonary disease in patients with alpha-1 antitrypsin deficiency (PiZ). Am J Respir Crit Care Med. 1999;160(6):1968-1975. doi: https://doi.org/10.1164/ajrccm.160.6.9904097
13. Lockett AD, Kimani S, Ddungu G, et al. Alpha(1)-antitrypsin modulates lung endothelial cell inflammatory responses to TNF-alpha. Am J Respir Cell Mol Biol. 2013;49(1):143-150. doi: https://doi.org/10.1165/rcmb.2012-0515OC
14. Papi A, Bellettato CM, Braccioni F, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med. 2006;173(10):1114-1121. doi: https://doi.org/10.1164/rccm.200506-859OC
15. Anderson HR, Spix C, Medina S, et al. Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: results from the APHEA project. Eur Respir J. 1997;10(5):1064-1071. doi: https://doi.org/10.1183/09031936.97.10051064
16. Hansel NN, McCormack MC, Kim V. The effects of air pollution and temperature on COPD. COPD. 2016;13(3):372-379. doi: https://doi.org/10.3109/15412555.2015.1089846
17. Rutten FH, Cramer MM, Lammers JJ, Grobbee DE, Hoes AW. Heart failure and chronic obstructive pulmonary disease: an ignored combination? Eur J Heart Fail. 2006;8(7):706-711. doi: https://doi.org/10.1016/j.ejheart.2006.01.010
18. Rizkallah J, Man SFP, Sin DD. Prevalence of pulmonary embolism in acute exacerbations of COPD: a systematic review and metaanalysis. Chest. 2009;135(3):786-793. doi: https://doi.org/10.1378/chest.08-1516
19. Sethi S, Evans N, Grant BJ, Murphy TF. New strains of bacteria and exacerbations of chronic obstructive pulmonary disease. N Engl J Med. 2002;347(7):465-471. doi: https://doi.org/10.1056/NEJMoa012561
20. Wilkinson TM, Hurst JR, Perera WR, Wilks M, Donaldson GC, Wedzicha JA. Effect of interactions between lower airway bacterial and rhinoviral infection in exacerbations of COPD. Chest. 2006;129(2):317-324. doi: https://doi.org/10.1378/chest.129.2.317
21. Sethi S, Wrona C, Eschberger K, Lobbins P, Cai X, Murphy TF. Inflammatory profile of new bacterial strain exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2008;177(5):491-497. doi: https://doi.org/10.1164/rccm.200708-1234OC
22. Nita I, Hollander C, Westin U, Janciauskiene SM. Prolastin, a pharmaceutical preparation of purified human alpha-1 antitrypsin, blocks endotoxin-mediated cytokine release. Respir Res. 2005;6:12-12. doi: https://doi.org/10.1186/1465-9921-6-12
23. Patel IS, Seemungal TA, Wilks M, Lloyd-Owen SJ, Donaldson GC, Wedzicha JA. Relationship between bacterial colonisation and the frequency, character, and severity of COPD exacerbations. Thorax. 2002;57(9):759-764. doi: https://doi.org/10.1136/thorax.57.9.759
24. Rosell A, Monso E, Soler N, et al. Microbiologic determinants of exacerbation in chronic obstructive pulmonary disease. Arch Intern Med. 2005;165(8):891-897. doi: https://doi.org/10.1001/archinte.165.8.891
25. Wood AM, Bassford C, Webster D, et al. Vitamin D-binding protein contributes to COPD by activation of alveolar macrophages. Thorax. 2011;66(3):205-210. doi: https://doi.org/10.1136/thx.2010.140921
26. Hampson JA, Stockley RA, Turner AM. Free light chains: potential biomarker and predictor of mortality in alpha-1 antitrypsin deficiency and usual COPD. Respir Res. 2016;17(1):34. doi: https://doi.org/10.1186/s12931-016-0348-1
27. Tumkaya M, Atis S, Ozge C, Delialioglu N, Polat G, Kanik A. Relationship between airway colonization, inflammation and exacerbation frequency in COPD. Respir Med. 2007;101(4):729-737. doi: https://doi.org/10.1016/j.rmed.2006.08.020
28. Balbi B, Sangiorgi C, Gnemmi I, et al. Bacterial load and inflammatory response in sputum of alpha-1 antitrypsin deficiency patients with COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:1879-1893. doi: https://doi.org/10.2147/COPD.S207203
29. Miravitlles M. Exacerbations of chronic obstructive pulmonary disease: when are bacteria important? Eur Respir J. 2002;20(36 suppl):9s-19s. doi: https://doi.org/10.1183/09031936.02.00400302
30. Strange C, Senior RM, Sciurba F, et al. Rationale and design of the genomic research in alpha-1 antitrypsin deficiency and sarcoidosis study. Alpha-1 protocol. Annals ATS. 2015;12(10):1551-1560. doi: https://doi.org/10.1513/AnnalsATS.201503-143OC
31. Ni Y, Shi G, Yu Y, Hao J, Chen T, Song H. Clinical characteristics of patients with chronic obstructive pulmonary disease with comorbid bronchiectasis: a systemic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2015;10:1465. doi: https://doi.org/10.2147/COPD.S83910
32. Birrer P, McElvaney NG, Rudeberg A, et al. Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med. 1994;150(1):207-213. doi: https://doi.org/10.1164/ajrccm.150.1.7912987
33. Doring G, Krogh-Johansen H, Weidinger S, Hoiby N. Allotypes of alpha-1 antitrypsin in patients with cystic fibrosis, homozygous and heterozygous for deltaF508. Pediatr Pulmonol. 1994;18(1):3-7. doi: https://doi.org/10.1002/ppul.1950180104
34. Frangolias DD, Ruan J, Wilcox PJ, et al. Alpha-1 antitrypsin deficiency alleles in cystic fibrosis lung disease. Am J Respir Cell Mol Biol. 2003;29(3 Pt 1):390-396. doi: https://doi.org/10.1165/rcmb.2002-0271OC
35. Mahadeva R, Westerbeek RC, Perry DJ, et al. Alpha1-antitrypsin deficiency alleles and the taq-I G-->A allele in cystic fibrosis lung disease. Eur Respir J. 1998;11(4):873-879. doi: https://doi.org/10.1183/09031936.98.11040873
36. Hewitt R, Farne H, Ritchie A, Luke E, Johnston SL, Mallia P. The role of viral infections in exacerbations of chronic obstructive pulmonary disease and asthma. Ther Adv Respir Dis. 2016;10(2):158-174. doi: https://doi.org/10.1177/1753465815618113
37. Wood AM, Harrison RM, Semple S, Ayres JG, Stockley RA. Outdoor air pollution is associated with rapid decline of lung function in α-1 antitrypsin deficiency. Occup Environ Med. 2010;67(8):556-561. doi: https://doi.org/10.1136/oem.2009.047589
38. Li J, Sun S, Tang R, et al. Major air pollutants and risk of COPD exacerbations: A systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2016;11:3079-3091. doi: https://doi.org/10.2147/COPD.S122282
39. Zhao J, Li M, Wang Z, et al. Role of PM(2.5) in the development and progression of COPD and its mechanisms. Respir Res. 2019;20(1):120-123. doi: https://doi.org/10.1186/s12931-019-1081-3
40. Westerik JA, Metting EI, van Boven JF, Tiersma W, Kocks JW, Schermer TR. Associations between chronic comorbidity and exacerbation risk in primary care patients with COPD. Respir Res. 2017;18(1):31-32. doi: https://doi.org/10.1186/s12931-017-0512-2
41. Greulich T, Nell C, Hohmann D, et al. The prevalence of diagnosed α-1 antitrypsin deficiency and its comorbidities: results from a large population-based database. Eur Respir J. 2017;49(1):1600154. doi: https://doi.org/10.1183/13993003.00154-2016
42. Gompertz S, O'Brien C, Bayley DL, Hill SL, Stockley RA. Changes in bronchial inflammation during acute exacerbations of chronic bronchitis. Eur Respir J. 2001;17(6):1112-1119. doi: https://doi.org/10.1183/09031936.01.99114901
43. Drost EM, Skwarski KM, Sauleda J, et al. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax. 424;60(4):293. doi: https://doi.org/10.1136/thx.2004.027946
44. Walsh DE, Greene CM, Carroll TP, et al. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium. J Biol Chem. 2001;276(38):35494-35499. doi: https://doi.org/10.1074/jbc.M103543200
45. Hubbard RC, Fells G, Gadek J, Pacholok S, Humes J, Crystal RG. Neutrophil accumulation in the lung in alpha-1 antitrypsin deficiency. Spontaneous release of leukotriene B4 by alveolar macrophages. J Clin Invest. 1991;88(3):891-897. doi: https://doi.org/10.1172/JCI115391
46. Stockley RA, Bayley DL, Unsal I, Dowson LJ. The effect of augmentation therapy on bronchial inflammation in alpha-1 antitrypsin deficiency. Am J Respir Crit Care Med. 2002;165(11):1494-1498. doi: https://doi.org/10.1164/rccm.2109013
47. O'Dwyer CA, O'Brien ME, Wormald MR, et al. The BLT1 inhibitory function of alpha-1 antitrypsin augmentation therapy disrupts leukotriene B4 neutrophil signaling. J Immunol. 2015;195(8):3628-3641. doi: https://doi.org/10.4049/jimmunol.1500038
48. Bergin DA, Reeves EP, Hurley K, et al. The circulating proteinase inhibitor alpha-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci Transl Med. 2014;6(217):217ra1. doi: https://doi.org/10.1126/scitranslmed.3007116
49. Jonigk D, Al-Omari M, Maegel L, et al. Anti-inflammatory and immunomodulatory properties of alpha-1 antitrypsin without inhibition of elastase. Proc Natl Acad Sci U S A. 2013;110(37):15007-15012. doi: https://doi.org/10.1073/pnas.1309648110
50. Woolhouse IS, Bayley DL, Stockley RA. Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of alpha-1 antitrypsin deficiency and the role of leukotriene B(4) and interleukin 8. Thorax. 2002;57(8):709-714. doi: https://doi.org/10.1136/thorax.57.8.709
51. Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ. Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest. 2003;123(4):1240-1247. doi: https://doi.org/10.1378/chest.123.4.1240
52. Bergin DA, Reeves EP, Meleady P, et al. Alpha-1 antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin Invest. 2010;120(12):4236-4250. doi: https://doi.org/10.1172/JCI41196
53. Stone H, McNab G, Wood AM, Stockley RA, Sapey E. Variability of sputum inflammatory mediators in COPD and α-1 antitrypsin deficiency. Eur Respir J. 2012;40(3):561-569. doi: https://doi.org/10.1183/09031936.00162811
54. Burnett D, Chamba A, Hill SL, Stockley RA. Neutrophils from subjects with chronic obstructive lung disease show enhanced chemotaxis and extracellular proteolysis. Lancet. 1987;2(8567):1043-1046. doi: https://doi.org/10.1016/S0140-6736(87)91476-0
55. Janciauskiene S, Wrenger S, Immenschuh S, et al. The multifaceted effects of Alpha-1 antitrypsin on neutrophil functions. Front Pharmacol. 2018;9:341. doi: https://doi.org/10.3389/fphar.2018.00341
56. Aaron SD, Angel JB, Lunau M, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):349-355. doi: https://doi.org/10.1164/ajrccm.163.2.2003122
57. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFα in pulmonary pathophysiology. Respir Res. 2006;7(1):125. doi: https://doi.org/10.1186/1465-9921-7-125
58. Berkow RL, Wang D, Larrick JW, Dodson RW, Howard TH. Enhancement of neutrophil superoxide production by preincubation with recombinant human tumor necrosis factor. J Immunol. 1987;139(11):3783-3791
59. Osawa Y, Nagaki M, Banno Y, et al. Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/akt pathways inhibits cell apoptosis in human hepatocytes. Infect Immun. 2002;70(11):6294-6301. doi: https://doi.org/10.1128/IAI.70.11.6294-6301.2002
60. Churg A, Wang X, Wang RD, Meixner SC, Pryzdial EL, Wright JL. Alpha-1 antitrypsin suppresses TNF-alpha and MMP-12 production by cigarette smoke-stimulated macrophages. Am J Respir Cell Mol Biol. 2007;37(2):144-151. doi: https://doi.org/10.1165/rcmb.2006-0345OC
61. Aaron SD, Vandemheen KL, Maltais F, et al. TNFα antagonists for acute exacerbations of COPD: a randomised double-blind controlled trial. Thorax. 2013;68(2):142-148. doi: https://doi.org/10.1136/thoraxjnl-2012-202432
62. Ji J, Su L, Liu Z. Critical role of calpain in inflammation. Biomed Rep. 2016;5(6):647-652. doi: https://doi.org/10.3892/br.2016.785
63. Al-Omari M, Korenbaum E, Ballmaier M, et al. Acute-phase protein alpha-1 antitrypsin inhibits neutrophil calpain I and induces random migration. Mol Med. 2011;17(9-10):865-874. doi: https://doi.org/10.2119/molmed.2011.00089
64. Cuzzocrea S, McDonald MC, Mazzon E, et al. Calpain inhibitor I reduces the development of acute and chronic inflammation. Am J Pathol. 2000;157(6):2065-2079. doi: https://doi.org/10.1016/S0002-9440(10)64845-6
65. Dutra FF, Bozza MT. Heme on innate immunity and inflammation. Front Pharmacol. 2014;5:115. doi: https://doi.org/10.3389/fphar.2014.00115
66. Janciauskiene S, Tumpara S, Wiese M, et al. Alpha-1 antitrypsin binds hemin and prevents oxidative activation of human neutrophils: putative pathophysiological significance. J Leukoc Biol. 2017;102(4):1127-1141. doi: https://doi.org/10.1189/jlb.3A0317-124R
67. Bradley LM, Douglass MF, Chatterjee D, Akira S, Baaten BJ. Matrix metalloprotease 9 mediates neutrophil migration into the airways in response to influenza virus-induced toll-like receptor signaling. PLoS Pathog. 2012;8(4):e1002641. doi: https://doi.org/10.1371/journal.ppat.1002641
68. Moreno JA, Ortega-Gomez A, Rubio-Navarro A, et al. High-density lipoproteins potentiate alpha-1 antitrypsin therapy in elastase-induced pulmonary emphysema. Am J Respir Cell Mol Biol. 2014;51(4):536-549. doi: https://doi.org/10.1165/rcmb.2013-0103OC
69. Russell RE, Culpitt SV, DeMatos C, et al. Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2002;26(5):602-609. doi: https://doi.org/10.1165/ajrcmb.26.5.4685
70. Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 2005;32(4):311-318. doi: https://doi.org/10.1165/rcmb.2004-0309OC
71. Bucurenci N, Blake DR, Chidwick K, Winyard PG. Inhibition of neutrophil superoxide production by human plasma alpha-1 antitrypsin. FEBS Lett. 1992;300(1):21-24. doi: https://doi.org/10.1016/0014-5793(92)80156-B
72. Li Z, Alam S, Wang J, Sandstrom CS, Janciauskiene S, Mahadeva R. Oxidized {alpha}1-antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):388. doi: https://doi.org/10.1152/ajplung.90373.2008
73. Taggart C, Cervantes-Laurean D, Kim G, et al. Oxidation of either methionine 351 or methionine 358 in alpha-1 antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem. 2000;275(35):27258-27265. doi: https://doi.org/10.1074/jbc.M004850200
74. Mulgrew AT, Taggart CC, Lawless MW, et al. Z alpha-1 antitrypsin polymerizes in the lung and acts as a neutrophil chemoattractant. Chest. 2004;125(5):1952-1957. doi: https://doi.org/10.1378/chest.125.5.1952
75. Crisford H, Sapey E, Stockley RA. Proteinase 3; a potential target in chronic obstructive pulmonary disease and other chronic inflammatory diseases. Respir Res. 2018;19(1):180. doi: https://doi.org/10.1186/s12931-018-0883-z
76. Rao NV, Wehner NG, Marshall BC, Gray WR, Gray BH, Hoidal JR. Characterization of proteinase-3 (PR-3), a neutrophil serine proteinase. structural and functional properties. J Biol Chem. 1991;266(15):9540-9548. doi:https://doi.org/10.1016/S0021-9258(18)92854-1
77. Murphy MP, McEnery T, McQuillan K, et al. Α1 antitrypsin therapy modulates the neutrophil membrane proteome and secretome. Eur Respir J. 2020;55(4):1901678. doi: https://doi.org/10.1183/13993003.01678-2019
78. Needham M, Stockley R. Exacerbations in alpha-1 antitrypsin deficiency. Eur Respir J. 2005;25(6):992-1000. doi: https://doi.org/10.1183/09031936.05.00074704
79. Vijayasaratha K, Stockley RA. Relationship between frequency, length, and treatment outcome of exacerbations to baseline lung function and lung density in alpha-1 antitrypsin-deficient COPD. Int J Chron Obstruct Pulmon Dis. 2012;7:789-796. doi: https://doi.org/10.2147/COPD.S31797
80. Donaldson GC, Seemungal TA, Patel IS, Lloyd-Owen SJ, Wilkinson TM, Wedzicha JA. Longitudinal changes in the nature, severity and frequency of COPD exacerbations. Eur Respir J. 2003;22(6):931-936. doi: https://doi.org/10.1183/09031936.03.00038303
81. George SN, Garcha DS, Mackay AJ, et al. Human rhinovirus infection during naturally occurring COPD exacerbations. Eur Respir J. 2014;44(1):87-96. doi: https://doi.org/10.1183/09031936.00223113
82. Johnston NW, Olsson M, Edsbäcker S, et al. Colds as predictors of the onset and severity of COPD exacerbations. Int J Chron Obstruct Pulmon Dis. 2017;12:839-848. doi: https://doi.org/10.2147/COPD.S127146
83. Seemungal TA, Donaldson GC, Bhowmik A, Jeffries DJ, Wedzicha JA. Time course and recovery of exacerbations in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2000;161(5):1608-1613. doi: https://doi.org/10.1164/ajrccm.161.5.9908022
84. Hiller AM, Piitulainen E, Jehpsson L, Tanash H. Decline in FEV1 and hospitalized exacerbations in individuals with severe alpha-1 antitrypsin deficiency. Int J Chron Obstruct Pulmon Dis. 2019;14:1075-1083. doi: https://doi.org/10.2147/COPD.S195847
85. Stockley RA, Bayley D, Hill SL, Hill AT, Crooks S, Campbell EJ. Assessment of airway neutrophils by sputum colour: correlation with airways inflammation. Thorax. 2001;56(5):366-372. doi: https://doi.org/10.1136/thorax.56.5.366
86. Gompertz S, Hill AT, Bayley DL, Stockley RA. Effect of expectoration on inflammation in induced sputum in alpha-1 antitrypsin deficiency. Respir Med. 2006;100(6):1094-1099. doi: https://doi.org/10.1016/j.rmed.2005.09.024
87. Dawkins PA, Dawkins CL, Wood AM, Nightingale PG, Stockley JA, Stockley RA. Rate of progression of lung function impairment in α-1 antitrypsin deficiency. Eur Respir J. 2009;33(6):1338-1344. doi: https://doi.org/10.1183/09031936.00061208
88. Downson LJ, Guest PJ, Stockley RA. Longitudinal changes in physiological, radiological, and health status measurements in α-1 antitrypsin deficiency and factors associated with decline. Am J Respir Crit Care Med. 2001;164(10):1805-1809. doi: https://doi.org/10.1164/ajrccm.164.10.2106036
89. Vestbo J, Edwards LD, Scanlon PD, et al. Changes in forced expiratory volume in 1 second overtime in COPD. N Engl J Med. 2011;365(13):1184-1192. doi: https://doi.org/10.1056/NEJMoa1105482
90. Campos MA, Alazemi S, Zhang G, et al. Exacerbations in subjects with alpha-1 antitrypsin deficiency receiving augmentation therapy. Respir Med. 2009;103(10):1532-1539. doi: https://doi.org/10.1016/j.rmed.2009.04.008
91. Walters J, Tan DJ, White CJ, Gibson PG, Wood‐Baker R, Walters EH. Systemic corticosteroids for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2014(9). doi: https://doi.org/10.1002/14651858.CD001288.pub4
92. Falk JA, Minai OA, Mosenifar Z. Inhaled and systemic corticosteroids in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2008;5(4):506-512. doi: https://doi.org/10.1513/pats.200707-096ET
93. Barczyk A, Sozañska E, Trzaska M, Pierzchala W. Decreased levels of myeloperoxidase in induced sputum of patients with COPD after treatment with oral glucocorticoids. Chest. 2004;126(2):389-393. doi: https://doi.org/10.1378/chest.126.2.389
94. Price DB, Trudo F, Voorham J, et al. Adverse outcomes from initiation of systemic corticosteroids for asthma: long-term observational study. J Asthma Allergy. 2018;11:193-204. doi: https://doi.org/10.2147/JAA.S176026
95. Walsh LJ, Wong CA, Oborne J, et al. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax. 2001;56(4):279-284. doi: https://doi.org/10.1136/thorax.56.4.279
96. Bafadhel M, McKenna S, Terry S, et al. Blood eosinophils to direct corticosteroid treatment of exacerbations of chronic obstructive pulmonary disease: a randomized placebo-controlled trial. Am J Respir Crit Care Med. 2012;186(1):48-55. doi: https://doi.org/10.1164/rccm.201108-1553OC
97. Sivapalan P, Lapperre TS, Janner J, et al. Eosinophil-guided corticosteroid therapy in patients admitted to hospital with COPD exacerbation (CORTICO-COP): a multicentre, randomised, controlled, open-label, non-inferiority trial. Lancet Respir Med. 2019;7(8):699-709. doi: https://doi.org/10.1016/S2213-2600(19)30176-6
98. Zaffarullah S, Turner AM, Stockley R, Griffiths D, Edgar R. Blood eosinophils as a biomarker in alpha-1 antitrypsin deficiency. Eur Respir J. 2015;46(suppl 59):PA3351. doi: https://doi.org/10.1183/13993003.congress-2015.PA3351
99. Singh D, Kolsum U, Brightling CE, Locantore N, Agusti A, Tal-Singer R. Eosinophilic inflammation in COPD: prevalence and clinical characteristics. Eur Respir J. 2014;44(6):1697-1700. doi: https://doi.org/10.1183/09031936.00162414
100. Dirksen A, Piitulainen E, Parr DG, et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in α-1 antitrypsin deficiency. Eur Respir J. 2009;33(6):1345-1353. doi: https://doi.org/10.1183/09031936.00159408
101. Chapman KR, Burdon JGW, Piitulainen E, et al. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9991):360-368. doi: https://doi.org/10.1016/S0140-6736(15)60860-1
102. Barros-Tizón JC, Torres ML, Blanco I, Martínez MT, Investigators of the rEXA study group. Reduction of severe exacerbations and hospitalization-derived costs in alpha-1 antitrypsin-deficient patients treated with alpha-1 antitrypsin augmentation therapy. Ther Adv Respir Dis. 2012;6(2):67-78. doi: https://doi.org/10.1177/1753465812438387
103. Burge PS, Calverley PM, Jones PW, Spencer S, Anderson JA, Maslen TK. Randomised, double blind, placebo-controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. BMJ. 2000;320(7245):1297-1303. doi: https://doi.org/10.1136/bmj.320.7245.1297
104. Calverley PM, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356(8):775-789. doi: https://doi.org/10.1056/NEJMoa063070
105. Ozol D, Aysan T, Solak ZA, Mogulkoc N, Veral A, Sebik F. The effect of inhaled corticosteroids on bronchoalveolar lavage cells and IL-8 levels in stable COPD patients. Respir Med. 2005;99(12):1494-1500. doi: https://doi.org/10.1016/j.rmed.2005.04.025
106. Basyigit I, Yildiz F, Ozkara SK, Yildirim E, Boyaci H, Ilgazli A. Addition of inhaled corticosteroid on combined bronchodilator therapy in patients with COPD. Pulm Pharmacol Ther. 2005;18(6):422-426. doi: https://doi.org/10.1016/j.pupt.2005.03.005
107. Montuschi P, Kharitonov SA, Ciabattoni G, Barnes PJ. Exhaled leukotrienes and prostaglandins in COPD. Thorax. 2003;58(7):585-588. doi: https://doi.org/10.1136/thorax.58.7.585
108. Crim C, Calverley PMA, Anderson JA, et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J. 2009;34(3):641-647. doi: https://doi.org/10.1183/09031936.00193908
109. Eklöf J, Ingebrigtsen TS, Soerensen R, et al. Use of inhaled corticosteroids and risk of acquiring pseudomonas aeruginosa in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2020:A2488. doi: https://doi.org/10.1164/ajrccm-conference.2020.201.1_MeetingAbstracts.A2488
110. Drummond MB, Dasenbrook EC, Pitz MW, Murphy DJ, Fan E. Inhaled corticosteroids in patients with stable chronic obstructive pulmonary disease: a systematic review and meta-analysis. JAMA. 2008;300(20):2407-2416. doi: https://doi.org/10.1001/jama.2008.717
111. Pott GB, Beard KS, Bryan CL, Merrick DT, Shapiro L. Alpha-1 antitrypsin reduces severity of pseudomonas pneumonia in mice and inhibits epithelial barrier disruption and pseudomonas invasion of respiratory epithelial cells. Front Public Health. 2013;1:19. doi: https://doi.org/10.3389/fpubh.2013.00019
112. Watz H, Tetzlaff K, Wouters EF, et al. Blood eosinophil count and exacerbations in severe chronic obstructive pulmonary disease after withdrawal of inhaled corticosteroids: a post-hoc analysis of the WISDOM trial. Lancet Respir Med. 2016;4(5):390-398. doi: https://doi.org/10.1016/S2213-2600(16)00100-4
113. Low EV, Hughes SM, Zaffarullah S, Kantas D, Stockley RA, Turner AM. ICS use may modify FEV1 decline in α-1 antitrypsin deficiency patients with relatively high blood eosinophils. Respiration. 2018;95(2):114-121. doi: https://doi.org/10.1159/000481867
114. Vogelmeier C, Hederer B, Glaab T, et al. Tiotropium versus salmeterol for the prevention of exacerbations of COPD. N Engl J Med. 2011;364(12):1093-1103. doi: https://doi.org/10.1056/NEJMoa1008378
115. Poole PJ, Chacko E, Wood-Baker RW, Cates CJ. Influenza vaccine for patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006;(1):CD002733. doi: https://doi.org/10.1002/14651858.CD002733.pub2
116. Walters JA, Tang JN, Poole P, Wood-Baker R. Pneumococcal vaccines for preventing pneumonia in chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;1(1):CD001390. doi: https://doi.org/10.1002/14651858.CD001390.pub4
117. Köhnlein T, Janciauskiene S, Welte T. Diagnostic delay and clinical modifiers in alpha-1 antitrypsin deficiency. Ther Adv Respir Dis. 2010;4(5):279-287. doi: https://doi.org/10.1177/1753465810376407
118. Campos MA, Alazemi S, Zhang G, Sandhaus RA, Wanner A. Influenza vaccination in subjects with α-1 antitrypsin deficiency. Chest. 2008;133(1):49-55. doi: https://doi.org/10.1378/chest.07-1482
119. Rodriguez-Roisin R. Toward a consensus definition for COPD exacerbations. Chest. 2000;117(5 Suppl 2):398S-401S. doi: https://doi.org/10.1378/chest.117.5_suppl_2.398S
120. Au DH, Bryson CL, Chien JW, et al. The effects of smoking cessation on the risk of chronic obstructive pulmonary disease exacerbations. J Gen Intern Med. 2009;24(4):457-463. doi: https://doi.org/10.1007/s11606-009-0907-y
121. Bernhard N, Lepper PM, Vogelmeier C, et al. Intensive smoking diminishes the differences in quality of life and exacerbation frequency between the alpha-1 antitrypsin deficiency genotypes PiZZ and PiSZ. Respir Med. 2017;130:1-8. doi: https://doi.org/10.1016/j.rmed.2017.07.004
122. Seymour JM, Moore L, Jolley CJ, et al. Outpatient pulmonary rehabilitation following acute exacerbations of COPD. Thorax. 2010;65(5):423-428. doi: https://doi.org/10.1136/thx.2009.124164
123. Incorvaia C, Russo A, Foresi A, et al. Effects of pulmonary rehabilitation on lung function in chronic obstructive pulmonary disease: the FIRST study. Eur J Phys Rehabil Med. 2014;50(4):419-426
124. Jarosch I, Hitzl W, Koczulla AR, et al. Comparison of exercise training responses in COPD patients with and without alpha-1 antitrypsin deficiency. Respir Med. 2017;130:98-101. doi: https://doi.org/10.1016/j.rmed.2017.07.009
125. Jarosch I, Gehlert S, Jacko D, et al. Different training-induced skeletal muscle adaptations in COPD patients with and without alpha-1 antitrypsin deficiency. Respiration. 2016;92(5):339-347. doi: https://doi.org/10.1159/000449509
126. Uzun S, Djamin RS, Kluytmans JA, et al. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2014;2(5):361-368. doi: https://doi.org/10.1016/S2213-2600(14)70019-0
127. Martinez FJ, Curtis JL, Albert R. Role of macrolide therapy in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008;3(3):331-350. doi: https://doi.org/10.2147/COPD.S681
128. Rogers GB, Bruce KD, Martin ML, Burr LD, Serisier DJ. The effect of long-term macrolide treatment on respiratory microbiota composition in non-cystic fibrosis bronchiectasis: an analysis from the randomised, double-blind, placebo-controlled BLESS trial. Lancet Respir Med. 2014;2(12):988-996. doi: https://doi.org/10.1016/S2213-2600(14)70213-9
129. Saiman L, Marshall BC, Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290(13):1749-1756. doi: https://doi.org/10.1001/jama.290.13.1749
130. Suzuki T, Yamaya M, Sekizawa K, et al. Erythromycin inhibits rhinovirus infection in cultured human tracheal epithelial cells. Am J Respir Crit Care Med. 2002;165(8):1113-1118. doi: https://doi.org/10.1164/ajrccm.165.8.2103094