1. Wheelock CE, Rappaport SM. The role of gene-environment interactions in lung disease: the urgent need for the exposome. Eur Respir J. 2020;55(2):1902064. doi: https://doi.org/10.1183/13993003.02064-2019
2. Barnes PJ. Inflammatory endotypes in COPD. Allergy. 2019;74(7):1249-1256. doi: https://doi.org/10.1111/all.13760
3. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16-27. doi: https://doi.org/10.1016/j.jaci.2016.05.011
4. Paplinska-Goryca M, Misiukiewicz-Stepien P, Nejman-Gryz P, et al. Epithelial-macrophage-dendritic cell interactions impact alarmins expression in asthma and COPD. Clin Immunol. 2020;215:108421. doi: https://doi.org/10.1016/j.clim.2020.108421
5. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689-698. doi: https://doi.org/10.1056/NEJMoa1104623
6. Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11:5886. doi: https://doi.org/10.1038/s41467-020-19701-0
7. Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2017;9:CD002309. doi: https://doi.org/10.1002/14651858.CD002309.pub5
8. Cosio BG, Iglesias A, Rios A, et al. Low-dose theophylline enhances the anti-inflammatory effects of steroids during exacerbations of COPD. Thorax. 2009;64(5):424-429. doi: https://doi.org/10.1136/thx.2008.103432
9. Lanier BQ, Corren J, Lumry W, Liu J, Fowler-Taylor A, Gupta N. Omalizumab is effective in the long-term control of severe allergic asthma. Ann Allergy Asthma Immunol. 2003;91(2):154-159. doi: https://doi.org/10.1016/S1081-1206(10)62170-9
10. Mejias JC, Forrest OA, Margaroli C, et al. Neutrophil-targeted, protease-activated pulmonary drug delivery blocks airway and systemic inflammation. JCI Insight. 2019;4(23):e131468. doi: https://doi.org/10.1172/jci.insight.131468
11. Bouquet J, Tabor DE, Silver JS, et al. Microbial burden and viral exacerbations in a longitudinal multicenter COPD cohort. Respir Res. 2020;21:77. doi: https://doi.org/10.1186/s12931-020-01340-0
12. Chakrabarti A, Mar JS, Choy DF, et al. High serum granulocyte-colony stimulating factor characterises neutrophilic COPD exacerbations associated with dysbiosis. ERJ Open Res. 2021;7(3):00836-2020. doi: https://doi.org/10.1183/23120541.00836-2020
13. Chen Y, Kumar RK, Thomas PS, Herbert C. Th1/17-biased inflammatory environment associated with COPD alters the response of airway epithelial cells to viral and bacterial stimuli. Mediators Inflamm. 2019;2019:7281462. doi: https://doi.org/10.1155/2019/7281462
14. Donovan C, Bourke JE, Vlahos R. Targeting the IL-33/IL-13 axis for respiratory viral infections. Trends Pharmacol Sci. 2016;37:252-261. doi: https://doi.org/10.1016/j.tips.2016.01.004
15. Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Deciphering respiratory-virus-associated interferon signaling in COPD airway epithelium. Medicina (Kaunas). 2022;58(1)121. doi: https://doi.org/10.3390/medicina58010121
16. Linden D, Guo-Parke H, Coyle PV, et al. Respiratory viral infection: a potential "missing link" in the pathogenesis of COPD. Eur Respir Rev. 2019;28(151):180063. doi: https://doi.org/10.1183/16000617.0063-2018
17. Menzel M, Ramu S, Calven J, et al. Oxidative stress attenuates TLR3 responsiveness and impairs anti-viral mechanisms in bronchial epithelial cells from COPD and asthma patients. Front Immunol. 2019;10:2765. doi: https://doi.org/10.3389/fimmu.2019.02765
18. Owuor N, Nalamala N, Gimenes JA, Jr., Sajjan US. Rhinovirus and COPD airway epithelium. Pulm Crit Care Med. 2017;2(3):10.15761/PCCM.1000139. doi: https://doi.org/10.15761/pccm.1000139
19. De Rose V, Molloy K, Gohy S, Pilette C, Greene CM. Airway epithelium dysfunction in cystic fibrosis and COPD. Mediators Inflamm. 2018;2018:1309746. doi: https://doi.org/10.1155/2018/1309746
20. Diver S, Khalfaoui L, Emson C, et al. Effect of tezepelumab on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9(11):1299-1312. doi: https://doi.org/10.1016/S2213-2600(21)00226-5
21. Poh WP, Kicic A, Lester SE, et al. COPD-related modification to the airway epithelium permits intracellular residence of nontypeable haemophilus influenzae and may be potentiated by macrolide arrest of autophagy. Int J Chron Obstruct Pulmon Dis. 2020;15:1253-1260. doi: https://doi.org/10.2147/COPD.S245819
22. Dragonieri S, Lacedonia D, Scioscia G, et al. Assessment of induced sputum cellularity in COPD patients belonging to two different classes of air pollution exposure. Arch Bronconeumol (Engl Ed). 2020;56(4):214-217. doi: https://doi.org/10.1016/j.arbr.2019.06.019
23. Adcock IM, Bhatt SP, Balkissoon R, Wise RA. The use of inhaled corticosteroids for patients with COPD who continue to smoke cigarettes: an evaluation of current practice. Am J Med. 2022;135(3):302-312. doi: https://doi.org/10.1016/j.amjmed.2021.09.006
24. Janson C. Inhaled corticosteroids in COPD: risk and benefits. Thorax. 2021:217930. doi: https://doi.org/10.1136/thoraxjnl-2021-217930
25. Jenkins CR, Wen FQ, Martin A, et al. The effect of low-dose corticosteroids and theophylline on the risk of acute exacerbations of COPD: the TASCS randomised controlled trial. Eur Respir J. 2021;57(6):2003338. doi: https://doi.org/10.1183/13993003.03338-2020
26. Keir HR, Contoli M, Chalmers JD. Inhaled corticosteroids and the lung microbiome in COPD. Biomedicines. 2021;9(10):1312. doi: https://doi.org/10.3390/biomedicines9101312
27. Lutter JI, Jorres RA, Trudzinski FC, et al. Treatment of COPD groups GOLD A and B with inhaled corticosteroids in the COSYCONET cohort - determinants and consequences. Int J Chron Obstruct Pulmon Dis. 2021;16:987-998. doi: https://doi.org/10.2147/COPD.S304532
28. Miravitlles M, Auladell-Rispau A, Monteagudo M, et al. Systematic review on long-term adverse effects of inhaled corticosteroids in the treatment of COPD. Eur Respir Rev. 2021;30(160):210075. doi: https://doi.org/10.1183/16000617.0075-2021
29. Chong J, Leung B, Poole P. Phosphodiesterase 4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2013;11:CD002309. doi: https://doi.org/10.1002/14651858.CD002309.pub4
30. Dunne AE, Kawamatawong T, Fenwick PS, et al. Direct inhibitory effect of the PDE4 inhibitor roflumilast on neutrophil migration in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2019;60(4):445-453. doi: https://doi.org/10.1165/rcmb.2018-0065OC
31. Grootendorst DC, Gauw SA, Verhoosel RM, et al. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax. 2007;62(12):1081-1087. doi: https://doi.org/10.1136/thx.2006.075937
32. Gibson MP, Walters JD. Inhibition of neutrophil inflammatory mediator expression by azithromycin. Clin Oral Investig. 2020;24:4493-4500. doi: https://doi.org/10.1007/s00784-020-03314-4
33. Krishnan JA, Albert RK, Rennard SI, study R. Waiting for actionable evidence: roflumilast or azithromycin? Chronic Obstr Pulm Dis. 2022;9(1):1-3. doi: https://doi.org/10.15326/jcopdf.2021.0272
34. Krishnan JK, Voelker H, Connett JE, et al. Effect of daily azithromycin therapy and adherence on readmission risk in COPD. Eur Respir J. 2019;53(3):1801377. doi: https://doi.org/10.1183/13993003.01377-2018
35. Luu NV, Yang J, Qu XJ, et al. Azithromycin inhibits neutrophil accumulation in airways by affecting interleukin-17 downstream signals. Chin Med J (Engl). 2012;125(3):491-495. https://journals.lww.com/cmj/Fulltext/2012/02010/Azithromycin_inhibits_neutrophil_accumulation_in.17.aspx.
36. Ramos FL, Lindberg SM, Krahnke JS, et al. Azithromycin and COPD exacerbations in the presence or absence of symptoms or active treatment for gastroesophageal reflux. Chronic Obstr Pulm Dis. 2014;1(2):221-228. doi: https://doi.org/10.15326/jcopdf.1.2.2014.0132
37. Ananya FN, Ahammed MR, Fahem MM, et al. Association of intestinal microbial dysbiosis with chronic obstructive pulmonary disease. Cureus. 2021;13(11):e19343. doi: https://doi.org/10.7759/cureus.19343
38. Ayupe MC, Silva F, Oliveira EE, et al. Obesity causes pulmonary dysbiosis affecting innate immune response in murine asthma model. Allergy. 2019;74(11):2230-2233. doi: https://doi.org/10.1111/all.13827
39. Li N, Dai Z, Wang Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res. 2021;22:274. doi: https://doi.org/10.1186/s12931-021-01872-z
40. Palma Albornoz SP, Fraga-Silva TFC, Gembre AF, et al. Obesity-induced dysbiosis exacerbates ifn-gamma production and pulmonary inflammation in the mycobacterium tuberculosis Infection. Cells. 2021;10(7):1732. doi: https://doi.org/10.3390/cells10071732
41. Singanayagam A, Glanville N, Cuthbertson L, et al. Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Sci Transl Med. 2019;11(507). doi: https://doi.org/10.1126/scitranslmed.aav3879
42. Toraldo DM, Conte L. Influence of the lung microbiota dysbiosis in chronic obstructive pulmonary disease exacerbations: the controversial use of corticosteroid and antibiotic treatments and the role of eosinophils as a disease marker. J Clin Med Res. 2019;11(10):667-675. doi: https://doi.org/10.14740/jocmr3875
43. Hou W, Hu S, Li C, et al. Cigarette smoke induced lung barrier dysfunction, EMT, and tissue remodeling: a possible link between COPD and lung cancer. Biomed Res Int. 2019;2019:2025636. doi: https://doi.org/10.1155/2019/2025636
44. Tejwani V, Yun X, Sikka G, Shimoda L, Suresh K. Airway epithelial genomic signatures in steroid-resistant COPD; role for SMAD3 in vascular remodeling in pulmonary hypertension; regulation of lung endothelial cell function by VEGFR3. Am J Respir Cell Mol Biol. 2019;61(3):392-394. doi: https://doi.org/10.1165/rcmb.2019-0075RO
45. Vitenberga Z, Pilmane M, Babjoniseva A. An insight into COPD morphopathogenesis: chronic inflammation, remodeling, and antimicrobial defense. Medicina (Kaunas). 2019;55(8):496. doi: https://doi.org/10.3390/medicina55080496
46. Wang Y, Xu J, Meng Y, Adcock IM, Yao X. Role of inflammatory cells in airway remodeling in COPD. Int J Chron Obstruct Pulmon Dis. 2018;13:3341-3348. doi: https://doi.org/10.2147/COPD.S176122
47. Daheshia M. Therapeutic inhibition of matrix metalloproteinases for the treatment of chronic obstructive pulmonary disease (COPD). Curr Med Res Opin. 2005;21(4):587-594. doi: https://doi.org/10.1185/030079905X41417
48. Demedts IK, Brusselle GG, Bracke KR, Vermaelen KY, Pauwels RA. Matrix metalloproteinases in asthma and COPD. Curr Opin Pharmacol. 2005;5(3):257-263. doi: https://doi.org/10.1016/j.coph.2004.12.005
49. Johnson SR. Untangling the protease web in COPD: metalloproteinases in the silent zone. Thorax. 2016;71(2):105-106. doi: https://doi.org/10.1136/thoraxjnl-2015-208204
50. Tsay JJ, Hu Y, Goldberg JD, et al. Value of metalloproteinases in predicting COPD in heavy urban smokers. Respir Res. 2020;21:228. doi: https://doi.org/10.1186/s12931-020-01496-9
51. Calverley PMA, Sethi S, Dawson M, et al. A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. Respir Res. 2017;18:153. doi: https://doi.org/10.1186/s12931-017-0633-7
52. Mahler DA, Huang S, Tabrizi M, Bell GM. Efficacy and safety of a monoclonal antibody recognizing interleukin-8 in COPD: a pilot study. Chest. 2004;126:926-934. doi: https://doi.org/10.1378/chest.126.3.926
53. Rennard SI, Dale DC, Donohue JF, et al. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(9):1001-1011. doi: https://doi.org/10.1164/rccm.201405-0992OC
54. Rennard SI, Flavin SK, Agarwal PK, Lo KH, Barnathan ES. Long-term safety study of infliximab in moderate-to-severe chronic obstructive pulmonary disease. Respir Med. 2013;107(3):424-432. doi: https://doi.org/10.1016/j.rmed.2012.11.008
55. Saha S, Brightling CE. Eosinophilic airway inflammation in COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(1):39-47. doi: https://doi.org/10.2147/copd.2006.1.1.39
56. Bartel S, Bhakta N, Christenson S. More than meets the eye: cigarette smoke induces genomic changes in the small airway epithelium independent of histologic changes. Am J Respir Crit Care Med. 2017;196(3):260-262. doi: https://doi.org/10.1164/rccm.201704-0665ED
57. Christenson SA. The role of genomic profiling in identifying molecular phenotypes in obstructive lung diseases. Curr Opin Pulm Med. 2020;26(1):84-89. doi: https://doi.org/10.1097/MCP.0000000000000646
58. Christenson SA, Steiling K, van den Berge M, et al. Asthma-COPD overlap. Clinical relevance of genomic signatures of type 2 inflammation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;191(7):758-766. doi: https://doi.org/10.1164/rccm.201408-1458OC
59. Ortega HG, Liu MC, Pavord ID, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2015;372(18):1777. doi: https://doi.org/10.1056/NEJMx150017
60. Barratt S. Mepolizumab in corticosteroid-resistant eosinophilic asthma. Thorax. 2009;64(6):552. https://thorax.bmj.com/content/64/6/552
61. Nair P, Pizzichini MM, Kjarsgaard M, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N Engl J Med. 2009;360:985-993. doi: https://doi.org/10.1056/NEJMoa0805435
62. Pavord ID, Korn S, Howarth P, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651-659. doi: https://doi.org/10.1016/S0140-6736(12)60988-X
63. Bleecker ER, FitzGerald JM, Chanez P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2115-2127. doi: https://doi.org/10.1016/S0140-6736(16)31324-1
64. Busse WW, Bleecker ER, FitzGerald JM, et al. Long-term safety and efficacy of benralizumab in patients with severe, uncontrolled asthma: 1-year results from the BORA phase 3 extension trial. Lancet Respir Med. 2019;7(1):46-59. doi: https://doi.org/10.1016/S2213-2600(18)30406-5
65. Nair P, Barker P, Goldman M. Glucocorticoid sparing of benralizumab in asthma. N Engl J Med. 2017;377:1205. doi: https://doi.org/10.1056/NEJMc1709523
66. Nair P, Wenzel S, Rabe KF, et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med. 2017;376:2448-2458. doi: https://doi.org/10.1056/NEJMoa1703501
67. Castro M, Corren J, Pavord ID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378:2486-2496. doi: https://doi.org/10.1056/NEJMoa1804092
68. Cheng SL. Molecular targets for biological therapies of severe asthma: focus on benralizumab and tezepelumab. Life (Basel). 2021;11(8):744. doi: https://doi.org/10.3390/life11080744
69. Rabe KF, Nair P, Brusselle G, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med. 2018;378:2475-2485. doi: https://doi.org/10.1056/NEJMoa1804093
70. Wenzel S, Castro M, Corren J, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet. 2016;388(10039):31-44. doi: https://doi.org/10.1016/S0140-6736(16)30307-5
71. Wenzel S, Ford L, Pearlman D, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368:2455-2466. doi: https://doi.org/10.1056/NEJMoa1304048
72. Donovan T, Milan SJ, Wang R, Banchoff E, Bradley P, Crossingham I. Anti-IL-5 therapies for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2020;12:CD013432. doi: https://doi.org/10.1002/14651858.CD013432.pub2
73. Pavord ID, Chapman KR, Bafadhel M, et al. Mepolizumab for eosinophil-associated COPD: analysis of METREX and METREO. Int J Chron Obstruct Pulmon Dis. 2021;16:1755-1770. doi: https://doi.org/10.2147/COPD.S294333
74. Criner GJ, Celli BR, Brightling CE, et al. Benralizumab for the prevention of COPD exacerbations. N Engl J Med. 2019;381:1023-1034. doi: https://doi.org/10.1056/NEJMoa1905248
75. Criner GJ, Celli BR, Singh D, et al. Predicting response to benralizumab in chronic obstructive pulmonary disease: analyses of GALATHEA and TERRANOVA studies. Lancet Respir Med. 2020;8:158-170. doi: https://doi.org/10.1016/S2213-2600(19)30338-8
76. Donovan C, Hansbro PM. IL-33 in chronic respiratory disease: from preclinical to clinical studies. ACS Pharmacol Transl Sci. 2020;3(1):56-62. doi: https://doi.org/10.1021/acsptsci.9b00099
77. Kim RY, Oliver BG, Wark PAB, Hansbro PM, Donovan C. COPD exacerbations: targeting IL-33 as a new therapy. Lancet Respir Med. 2021;9(11):1213-1214. doi: https://doi.org/10.1016/S2213-2600(21)00182-X
78. Menzies-Gow A, Colice G, Griffiths JM, et al. NAVIGATOR: a phase 3 multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the efficacy and safety of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21:266. doi: https://doi.org/10.1186/s12931-020-01526-6
79. Menzies-Gow A, Corren J, Bourdin A, et al. Tezepelumab in adults and adolescents with severe, uncontrolled asthma. N Engl J Med. 2021;384:1800-1809. doi: https://doi.org/10.1056/NEJMoa2034975
80. Menzies-Gow A, Ponnarambil S, Downie J, Bowen K, Hellqvist A, Colice G. DESTINATION: a phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group trial to evaluate the long-term safety and tolerability of tezepelumab in adults and adolescents with severe, uncontrolled asthma. Respir Res. 2020;21:279. doi: https://doi.org/10.1186/s12931-020-01541-7
81. Menzies-Gow A, Wechsler ME, Brightling CE. Unmet need in severe, uncontrolled asthma: can anti-TSLP therapy with tezepelumab provide a valuable new treatment option? Respir Res. 2020;21:268. doi: https://doi.org/10.1186/s12931-020-01505-x
82. Wechsler ME, Menzies-Gow A, Brightling CE, et al. Evaluation of the oral corticosteroid-sparing effect of tezepelumab in adults with oral corticosteroid-dependent asthma (SOURCE): a randomised, placebo-controlled, phase 3 study. Lancet Respir Med. 2022; In press. doi https://doi.org/10.1016/S2213-2600(21)00537-3
83. Brightling CE, Bleecker ER, Panettieri RA, Jr, et al. Benralizumab for chronic obstructive pulmonary disease and sputum eosinophilia: a randomised, double-blind, placebo-controlled, phase 2a study. Lancet Respir Med. 2014;2(11):891-901. doi: https://doi.org/10.1016/S2213-2600(14)70187-0
84. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease, 2022 report. GOLD website. Published 2022. Accessed April 2022. https://goldcopd.org/2022-gold-reports-2/.