1. Soriano JB, Abajobir AA, Abate KH, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respir Med. 2017;5(9):691-706. doi: https://doi.org/10.1016/S2213-2600(17)30293-X
2. Kochanek KD, Murphy SL, Xu J, Arias E. Mortality in the United States, 2016. Centers for Disease Control and Prevention website. Published 2016. Updated December 21, 2017. Accessed October 20, 2020. https://www.cdc.gov/nchs/products/databriefs/db293.htm
3. Sullivan J, Pravosud V, Mannino DM, Siegel K, Choate R, Sullivan T. National and state estimates of COPD morbidity and mortality - United States, 2014-2015. Chronic Obstr Pulm Dis. 2018;5(4):324-333. doi: https://doi.org/10.15326/jcopdf.5.4.2018.0157
4. Ahmad FB. Provisional mortality data - United States, 2020. MMWR Morb Mortal Wkly Rep. 2021;70(14):519-522. doi: https://doi.org/10.15585/mmwr.mm7014e1
5. Tang WHW, Backhed F, Landmesser U, Hazen SL. Intestinal microbiota in cardiovascular health and disease: JACC state-of-the-art review. J Am Coll Cardiol. 2019;73(16):2089. doi: https://doi.org/10.1016/j.jacc.2019.03.024
6. Dirajlal-Fargo S, El-Kamari V, Weiner L, et al. Altered intestinal permeability and fungal translocation in Ugandan children with human immunodeficiency virus. Clin Infect Dis. 2020;70(11):2413-2422. doi: https://doi.org/10.1093/cid/ciz561
7. Shenoy MK, Fadrosh DW, Lin DL, et al. Gut microbiota in HIV-pneumonia patients is related to peripheral CD4 counts, lung microbiota, and in vitro macrophage dysfunction. Microbiome. 2019;7(1). doi: https://doi.org/10.1186/s40168-019-0651-4
8. Lim PS, Chang YK, Wu TK. Serum lipopolysaccharide-binding protein is associated with chronic inflammation and metabolic syndrome in hemodialysis patients. Blood Purif. 2019;47(1-3):28-36. doi: https://doi.org/10.1159/000492778
9. Felizardo RJF, Mizuno Watanabe IK, Dardi P, Venturini Rossoni L, Olsen Saraiva Câmara N. The interplay among gut microbiota, hypertension and kidney diseases: the role of short-chain fatty acids. Pharmacol Res. 2019;141:366-377. doi: https://doi.org/10.1016/j.phrs.2019.01.019
10. Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16(3):137-154. doi: https://doi.org/10.1038/s41569-018-0108-7
11. Chiu YC, Lee SW, Liu CW, et al. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. Plos One. 2021;16(4):e0249944. doi: https://doi.org/10.1371/journal.pone.0249944
12. Sun Z, Zhu QL, Shen Y, Yan T, Zhou X. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations. Kaohsiung J Med Sci. 2020;36(2):107-113. doi: https://doi.org/10.1002/kjm2.12147
13. Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11(1):1-15. doi: https://doi.org/10.1038/s41467-020-19701-0
14. Dima E, Kyriakoudi A, Kaponi M, et al. The lung microbiome dynamics between stability and exacerbation in chronic obstructive pulmonary disease (COPD): current perspectives. Respir Med. 2019;157:1-6. doi: https://doi.org/10.1016/j.rmed.2019.08.012
15. Sze MA, Hogg JC, Sin DD. Bacterial microbiome of lungs in COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:229-238. doi: https://doi.org/10.2147/COPD.S38932
16. Morris A, Sciurba FC, Lebedeva IP, et al. Association of chronic obstructive pulmonary disease severity and pneumocystis colonization. Am J Respir Crit Care Med. 2004;170(4):408-413. doi: https://doi.org/10.1164/rccm.200401-094OC
17. Morris A, Hillenbrand M, Finkelman M, et al. Serum (1→3)-β-D-glucan levels in HIV-infected individuals are associated with immunosuppression, inflammation, and cardiopulmonary function. J Acquir Immune Defic Syndr. 2012;61(4):462-468. doi: https://doi.org/10.1097/QAI.0b013e318271799b
18. Bashir KMI, Choi JS. Clinical and physiological perspectives of β-glucans: the past, present, and future. Int J Mol Sci. 2017;18(9). doi: https://doi.org/10.3390/ijms18091906
19. Mehraj V, Ramendra R, Isnard S, et al. Circulating (1→3)-β-D-glucan is associated with immune activation during human immunodeficiency virus infection. Clin Infect Dis. 2020;70(2):232-242. doi: https://doi.org/10.1093/cid/ciz212
20. Camilli G, Tabouret G, Quintin J. The complexity of fungal β-glucan in health and disease: effects on the mononuclear phagocyte system. Front Immunol. 2018;9(673). doi: https://doi.org/10.3389/fimmu.2018.00673
21. Li Y, Lu Y, Zhao Z, et al. Relationships of MMP-9 and TIMP-1 proteins with chronic obstructive pulmonary disease risk: a systematic review and meta-analysis. J Res Med Sci. 2016;21(1). doi: https://doi.org/10.4103/1735-1995.178737
22. Li Y, Lu Y, Zhao Z, et al. Systemic inflammatory biomarkers and co-morbidities of chronic obstructive pulmonary disease. Ann Med. 2013;45(3):291-300. doi: https://doi.org/10.3109/07853890.2012.732703
23. PW J. St George's Respiratory Questionnaire: MCID. COPD. 2005;2(1):75-79. doi: https://doi.org/10.1081/COPD-200050513
24. Wilson DO, Weissfeld JL, Balkan A, et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med. 2008;178(7):738-744. doi: https://doi.org/10.1164/rccm.200803-435OC
25. Tran T, Beal SG. Application of the 1,3-β-D-glucan (Fungitell) assay in the diagnosis of invasive fungal infections. Arch Pathol Lab Med. 2016;140(2):181-185. doi: https://doi.org/10.5858/arpa.2014-0230-RS
26. Rautemaa V, Green HD, Jones AM, Rautemaa-Richardson R. High level of β-(1,3)-D-glucan antigenaemia in cystic fibrosis in the absence of invasive fungal disease. Diagn Microbiol Infect Dis. 2017;88(4):316-321. doi: https://doi.org/10.1016/j.diagmicrobio.2017.05.010
27. Farhour Z, Mehraj V, Chen J, Ramendra R, Lu H, Routy JP. Use of (1→3)-β-d-glucan for diagnosis and management of invasive mycoses in HIV-infected patients. Mycoses. 2018;61(10):718-722. doi: https://doi.org/10.1111/myc.12797
28. Wong J, Zhang Y, Swift O, et al. Beta-glucans in advanced CKD: role in endotoxaemia and inflammation. BMC Nephrol. 2020;21(1). doi: https://doi.org/10.1186/s12882-020-01779-9
29. Kitsios GD, Kotok D, Yang H, et al. Plasma 1,3-β-d-glucan levels predict adverse clinical outcomes in critical illness. JCI Insight. 2021;6(14). doi: https://doi.org/10.1172/jci.insight.141277
30. White PL, Posso R, Parr C, Price JS, Finkelman M, Barnes RA. The presence of (1→3)-β-D-glucan as prognostic marker in patients after major abdominal surgery. Clin Infect Dis. 2021;73(7):e1415–e1422. doi: https://doi.org/10.1093/cid/ciaa1370
31. Kikkert R, Bulder I, de Groot ER, Aarden LA, Finkelman MA. Potentiation of toll-like receptor-induced cytokine production by (1-->3)-beta-D-glucans: implications for the monocyte activation test. J Endotoxin Res. 2007;13(3):140-149. doi: https://doi.org/10.1177/0968051907080024
32. Tada H, Aiba S, Shibata KI, Ohteki T, Takada H. Synergistic effect of Nod1 and Nod2 agonists with toll-like receptor agonists on human dendritic cells to generate interleukin-12 and T helper type 1 cells. Infect Immun. 2005;73(12):7967-7976. doi: https://doi.org/10.1128/IAI.73.12.7967-7976.2005
33. Dennehy KM, Ferwerda G, Faro-Trindade I, et al. Syk kinase is required for collaborative cytokine production induced through dectin-1 and toll-like receptors. Eur J Immunol. 2008;38(2):500-506. doi: https://doi.org/10.1002/eji.200737741
34. Brown GD, Gordon S. Immune recognition of fungal β-glucans. Cell Microbiol. 2005;7(4):471-479. doi: https://doi.org/10.1111/j.1462-5822.2005.00505.x
35. Lilly LM, Gessner MA, Dunaway CW, et al. The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22. J Immunol. 2012;189(7):3653-3660. doi: https://doi.org/10.4049/jimmunol.1201797
36. Higashino-Kameda M, Yabe-Wada T, Matsuba S, et al. A critical role of Dectin-1 in hypersensitivity pneumonitis. Inflamm Res. 2016;65(3):235-244. doi: https://doi.org/10.1007/s00011-015-0910-1
37. Ito T, Hirose J, Norimoto A, et al. Dectin-1 plays an important role in house dust mite-induced allergic airway inflammation through the activation of CD11b+ dendritic cells. J Immunol. 2017;198(1):61-70. doi: https://doi.org/10.4049/jimmunol.1502393
38. de Vries H, Plantinga T, van Krieken J, et al. Genetic association analysis of the functional c.714T>G polymorphism and mucosal expression of dectin-1 in inflammatory bowel disease. PloS One. 2009;4(11):e7818. doi: https://doi.org/10.1371/journal.pone.0007818
39. Rahabi M, Jacquemin G, Prat M, et al. Divergent roles for macrophage c-type lectin receptors, dectin-1 and mannose receptors, in the intestinal inflammatory response. Cell Rep. 2020;30(13):4386-4398.e5. doi: https://doi.org/10.1016/j.celrep.2020.03.018
40. Fan Q, Tao R, Zhang H, et al. Dectin-1 contributes to myocardial ischemia/reperfusion injury by regulating macrophage polarization and neutrophil infiltration. Circulation. 2019;139(5):663-678. doi: https://doi.org/10.1161/CIRCULATIONAHA.118.036044
41. Rautemaa V, Green HD, Jones AM, Rautemaa-Richardson R. High level of β-(1,3)-d-glucan antigenaemia in cystic fibrosis in the absence of invasive fungal disease. Diagn Microbiol Infect Dis. 2017;88(4):316-321. doi: https://doi.org/10.1016/j.diagmicrobio.2017.05.010
42. Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest. 2017;127(7):2829-2841. doi: https://doi.org/10.1172/JCI90562
43. Kalia N, Singh J, Kaur M. The role of dectin-1 in health and disease. Immunobiology. 2021;226(2). doi: https://doi.org/10.1016/j.imbio.2021.152071
44. Gharib SA, Manicone AM, Parks WC. Matrix metalloproteinases in emphysema. Matrix Biol. 2018;73:34-51. doi: https://doi.org/10.1016/j.matbio.2018.01.018
45. Fujii W, Kapellos TS, Baßler K, et al. Alveolar macrophage transcriptomic profiling in COPD shows major lipid metabolism changes. ERJ Open Res. 2021;7(3):00915-2020. doi: https://doi.org/10.1183/23120541.00915-2020
46. Higashimoto Y, Yamagata Y, Iwata T, et al. Increased serum concentrations of tissue inhibitor of metalloproteinase-1 in COPD patients. Eur Respir J. 2005;25(5):885-890. doi: https://doi.org/10.1183/09031936.05.00092804
47. Koo HK, Hong Y, Lim MN, Yim JJ, Kim WJ. Relationship between plasma matrix metalloproteinase levels, pulmonary function, bronchodilator response, and emphysema severity. Int J Chron Obstruct Pulmon Dis. 2016;11(1):1129-1137. doi: https://doi.org/10.2147/COPD.S103281
48. Wang R, Ahmed J, Wang G, et al. Down-regulation of the canonical wnt β-catenin pathway in the airway epithelium of healthy smokers and smokers with COPD. Plos One. 2011;6(4):e14793. doi: https://doi.org/10.1371/journal.pone.0014793
49. Montaño M, Sansores RH, Becerril C, et al. FEV1 inversely correlates with metalloproteinases 1, 7, 9 and CRP in COPD by biomass smoke exposure. Respir Res. 2014;15(1):1-7. doi: https://doi.org/10.1186/1465-9921-15-74
50. Wang Z, Maschera B, Lea S, et al. Airway host-microbiome interactions in chronic obstructive pulmonary disease. Respir Res. 2019;20(1):1-14. doi: https://doi.org/10.1186/s12931-019-1085-z
51. Millares L, Pascual S, Montón C, et al. Relationship between the respiratory microbiome and the severity of airflow limitation, history of exacerbations and circulating eosinophils in COPD patients. BMC Pulm Med. 2019;19(1):1-9. doi: https://doi.org/10.1186/s12890-019-0867-x
52. Cui L, Lucht L, Tipton L, et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med. 2015;191(8):932-942. doi: https://doi.org/10.1164/rccm.201409-1583OC
53. Su J, Liu HY, Tan XL, et al. Sputum bacterial and fungal dynamics during exacerbations of severe COPD. PLoS One. 2015;10(7):1-13. doi: https://doi.org/10.1371/journal.pone.0130736
54. Pallavan B, Ramesh V, Dhanasekaran BP, Oza N, indu S, Govindarajan V. Comparison and correlation of candidal colonization in diabetic patients and normal individuals. J Diabetes Metab Disord. 2014;13(66). doi: https://doi.org/10.1186/2251-6581-13-66
55. Rutten EPA, Lenaerts K, Buurman WA, Wouters EFM. Disturbed intestinal integrity in patients with COPD : Effects of activities of daily living. Chest. 2014;145(2):245-252. doi: https://doi.org/10.1378/chest.13-0584
56. Sprooten RTM, Lenaerts K, Braeken DCW, et al. Increased small intestinal permeability during severe acute exacerbations of COPD. Respiration. 2018;95(5):334-342. doi: https://doi.org/10.1159/000485935
57. Fricker M, Goggins BJ, Mateer S, et al. Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight. 2018;3(3):e94040. doi: https://doi.org/10.1172/jci.insight.94040
58. eSilva KF, Nanini HF, Rosas SLB, et al. Serum 1,3-beta-d-glucan as a noninvasive test to predict histologic activity in patients with inflammatory bowel disease. World J Gastroenterol. 2021;27(9):866. doi: https://doi.org/10.3748/wjg.v27.i9.866
59. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for prevention, diagnosis, and management of COPD, 2022 report. GOLD website. Published 2022. Accessed January 2022. https://goldcopd.org/
60. Kanamori H, Kanemitsu K, Miyasaka T, et al. Measurement of (1-3)-beta-d-glucan derived from different gauze types. Tohoku J Exp Med. 2009;217(2):117-121. doi: https://doi.org/10.1620/tjem.217.117
61. Hong F, Yan J, Baran JT, et al. Mechanism by which orally administered beta-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J Immunol. 2004;173(2):797-806. doi: https://doi.org/10.4049/jimmunol.173.2.797