1. World Health Organization (WHO). Chronic obstructive pulmonary disease (COPD). WHO website. Published 2021. Updated 2022. Accessed 2021. https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd)
2. CHEST. World lung cancer day 2020 fact sheet. CHEST website. Published 2020. Accessed February 2022. https://www.chestnet.org/newsroom/chest-news/2020/07/world-lung-cancer-day-2020-fact-sheet
3. Divo M, Cote C, de Torres JP, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155-161. doi: https://doi.org/10.1164/rccm.201201-0034OC
4. Anthonisen NR, Skeans MA, Wise RA, et al. The effects of a smoking cessation intervention on 14.5-year mortality: a randomized clinical trial. Ann Intern Med. 2005;142(4):233-239. doi: https://doi.org/10.7326/0003-4819-142-4-200502150-00005
5. Gao YH, Guan WJ, Liu Q, et al. Impact of COPD and emphysema on survival of patients with lung cancer: a meta-analysis of observational studies. Respirology. 2016;21(2):269-279. doi: https://doi.org/10.1111/resp.12661
6. Amirahmadi R, Kumar AJ, Cowan M, Deepak J. Lung cancer screening in patients with COPD-A case report. Medicina (Kaunas). 2019;55(7):364. doi: https://doi.org/10.3390/medicina55070364
7. Tockman MS, Anthonisen NR, Wright EC, Donithan MG. Airways obstruction and the risk for lung cancer. Ann Intern Med. 1987;106(4):512-518. doi: https://doi.org/10.7326/0003-4819-106-4-512
8. Skillrud DM, Offord KP, Miller RD. Higher risk of lung cancer in chronic obstructive pulmonary disease. A prospective, matched, controlled study. Ann Intern Med. 1986;105(4):503-507. doi: https://doi.org/10.7326/0003-4819-105-4-503
9. de Torres JP, Bastarrika G, Wisnivesky JP, et al. Assessing the relationship between lung cancer risk and emphysema detected on low-dose CT of the chest. Chest. 2007;132(6):1932-1938. doi: https://doi.org/10.1378/chest.07-1490
10. Wille MM, Dirksen A, Ashraf H, et al. Results of the randomized danish lung cancer screening trial with focus on high-risk profiling. Am J Respir Crit Care Med. 2016;193(5):542-551. doi: https://doi.org/10.1164/rccm.201505-1040OC
11. Durham AL, Adcock IM. The relationship between COPD and lung cancer. Lung Cancer. 2015;90(2):121-127. https://doi.org/10.1016/j.lungcan.2015.08.017
12. Houghton AM, Mouded M, Shapiro SD. Common origins of lung cancer and COPD. Nat Med. 2008;14:1023-1024. doi: https://doi.org/10.1038/nm1008-1023
13. Celli BR. Chronic obstructive pulmonary disease and lung cancer: common pathogenesis, shared clinical challenges. Proc Am Thorac Soc. 2012;9(2):74-79. doi: https://doi.org/10.1513/pats.201107-039MS
14. Schetter AJ, Heegaard NH, Harris CC. Inflammation and cancer: interweaving microRNA, free radical, cytokine and p53 pathways. Carcinogenesis. 2010;31(1):37-49. doi: https://doi.org/10.1093/carcin/bgp272
15. Hayashi PH, Zeldis JB. Molecular biology of viral hepatitis and hepatocellular carcinoma. Compr Ther. 1993;19(5):188-196. https://europepmc.org/article/med/8275664
16. Pera M, Trastek VF, Pairolero PC, Cardesa A, Allen MS, Deschamps C. Barrett's disease: pathophysiology of metaplasia and adenocarcinoma. Ann Thorac Surg. 1993;56:1191-1197. doi: https://doi.org/10.1016/0003-4975(95)90050-0
17. Hecht SS. Lung carcinogenesis by tobacco smoke. Int J Cancer. 2012;131(12):2724-2732. doi: https://doi.org/10.1002/ijc.27816
18. Ballaz S, Mulshine JL. The potential contributions of chronic inflammation to lung carcinogenesis. Clin Lung Cancer. 2003;5(1):46-62. doi: https://doi.org/10.3816/CLC.2003.n.021
19. Chalela R, Gea J, Barreiro E. Immune phenotypes in lung cancer patients with COPD: potential implications for immunotherapy. J Thorac Dis. 2018;10(Suppl 18):S2186-S2189. doi: https://doi.org/10.21037/jtd.2018.06.143
20. Rangelov K, Sethi S. Role of infections. Clin Chest Med. 2014;35(1):87-100. doi: https://doi.org/10.1016/j.ccm.2013.09.012
21. Yao H, Rahman I. Current concepts on the role of inflammation in COPD and lung cancer. Curr Opin Pharmacol. 2009;9(4):375-383. doi: https://doi.org/10.1016/j.coph.2009.06.009
22. Biton J, Ouakrim H, Dechartres A, et al. Impaired tumor-infiltrating T cells in patients with chronic obstructive pulmonary disease impact lung cancer response to PD-1 blockade. Am J Respir Crit Care Med. 2018;198(7):928-940. doi: https://doi.org/10.1164/rccm.201706-1110OC
23. Chang SH, Mirabolfathinejad SG, Katta H, et al. T helper 17 cells play a critical pathogenic role in lung cancer. Proc Natl Acad Sci U S A. 2014;111(15):5664-5669. doi: https://doi.org/10.1073/pnas.1319051111
24. Gentles AJ, Bratman SV, Lee LJ, et al. Integrating tumor and stromal gene expression signatures with clinical indices for survival stratification of early-stage non-small cell lung cancer. J Natl Cancer Inst. 2015;107(10):djv211. doi: https://doi.org/10.1093/jnci/djv211
25. Tang J, Ramis-Cabrer D, Curull V, et al. Immune cell subtypes and cytokines in lung tumor microenvironment: influence of COPD. Cancers (Basel). 2020;12(5):1217. doi: https://doi.org/10.3390/cancers12051217
26. Divo MJ, Celli BR, Poblador-Plou B, et al. Chronic obstructive pulmonary disease (COPD) as a disease of early aging: evidence from the EpiChron cohort. PLoS One. 2018;13(2):e0193143. doi: https://doi.org/10.1371/journal.pone.0193143
27. Caramori G, Adcock IM, Casolari P, et al. Unbalanced oxidant-induced DNA damage and repair in COPD: a link towards lung cancer. Thorax. 2011;66(6):521-527. doi: https://doi.org/10.1136/thx.2010.156448
28. Morla M, Busquets X, Pons J, Sauleda J, MacNee W, Agusti AG. Telomere shortening in smokers with and without COPD. Eur Respir J. 2006;27(3):525-528. doi: https://doi.org/10.1183/09031936.06.00087005
29. Hosgood HD, Cawthon R, He X, Chanock S, Lan Q. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility. Lung Cancer. 2009;66(2):157-161. doi: https://doi.org/10.1016/j.lungcan.2009.02.005
30. Jang JS, Choi YY, Lee WK, et al. Telomere length and the risk of lung cancer. Cancer Sci. 2008;99(7):1385-1389. doi: https://doi.org/10.1111/j.1349-7006.2008.00831.x
31. Mambo E, Chatterjee A, de Souza-Pinto NC, et al. Oxidized guanine lesions and hOgg1 activity in lung cancer. Oncogene. 2005;24:4496-4508. doi: https://doi.org/10.1038/sj.onc.1208669
32. Vulimiri SV, Wu X, Baer-Dubowska W, et al. Analysis of aromatic DNA adducts and 7,8-dihydro-8-oxo-2' deoxyguanosine in lymphocyte DNA from a case-control study of lung cancer involving minority populations. Mol Carcinog. 2000;27(4):330. doi: https://doi.org/10.1002/(SICI)1098-2744(200004)27:4<330::AID-MC11>3.0.CO;2-E
33. Osoata GO, Yamamura S, Ito M, et al. Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun. 2009;384(3):366-371. doi: https://doi.org/10.1016/j.bbrc.2009.04.128
34. Warren GW, Singh AK. Nicotine and lung cancer. J Carcinog. 2013;12(1). doi: https://doi.org/10.4103/1477-3163.106680
35. Schwartz AG, Ruckdeschel JC. Familial lung cancer: genetic susceptibility and relationship to chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;173(1):16-22. doi: https://doi.org/10.1164/rccm.200502-235PP
36. Joost O, Wilk JB, Cupples LA, et al. Genetic loci influencing lung function: a genome-wide scan in the Framingham Study. Am J Respir Crit Care Med. 2002;165(6):795-799. doi: https://doi.org/10.1164/ajrccm.165.6.2102057
37. Silverman EK, Mosley JD, Palmer LJ, et al. Genome-wide linkage analysis of severe, early-onset chronic obstructive pulmonary disease: airflow obstruction and chronic bronchitis phenotypes. Hum Mol Genet. 2002;11(6):623-632. doi: https://doi.org/10.1093/hmg/11.6.623
38. Yang IA, Holloway JW, Fong KM. Genetic susceptibility to lung cancer and co-morbidities. J Thorac Dis. 2013;5(Suppl 5):S454-462. https://jtd.amegroups.com/article/view/1561/html
39. Van Dyke AL, Cote ML, Wenzlaff AS, et al. Cytokine and cytokine receptor single-nucleotide polymorphisms predict risk for non-small cell lung cancer among women. Cancer Epidemiol Biomarkers Prev. 2009;18(6):1829-1840. doi: https://doi.org/10.1158/1055-9965.EPI-08-0962
40. Franco R, Schoneveld O, Georgakilas AG, Panayiotidis MI. Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett. 2008;266(1):6-11. doi: https://doi.org/10.1016/j.canlet.2008.02.026
41. Kabesch M, Adcock IM. Epigenetics in asthma and COPD. Biochimie. 2012;94(11):2231-2241. doi: https://doi.org/10.1016/j.biochi.2012.07.017
42. Mannino DM, Aguayo SM, Petty TL, Redd SC. Low lung function and incident lung cancer in the United States: data From the First National Health and Nutrition Examination Survey follow-up. Arch Intern Med. 2003;163(12):1475-1480. doi: https://doi.org/10.1001/archinte.163.12.1475
43. Wilson DO, Weissfeld JL, Balkan A, et al. Association of radiographic emphysema and airflow obstruction with lung cancer. Am J Respir Crit Care Med. 2008;178(7):738-744. doi: https://doi.org/10.1164/rccm.200803-435OC
44. de-Torres JP, Marín JM, Casanova C, et al. Identification of COPD patients at high risk for lung cancer mortality using the COPD-LUCSS-DLCO. Chest. 2016;149(4):936-942. doi: https://doi.org/10.1378/chest.15-1868
45. Maldonado F, Bartholmai BJ, Swensen SJ, Midthun DE, Decker PA, Jett JR. Are airflow obstruction and radiographic evidence of emphysema risk factors for lung cancer? A nested case-control study using quantitative emphysema analysis. Chest. 2010;138(6):1295-1302. doi: https://doi.org/10.1378/chest.09-2567
46. Young RP, Duan F, Chiles C, et al. Airflow limitation and histology shift in the national lung screening trial. The NLST-ACRIN Cohort Substudy. Am J Respir Crit Care Med. 2015;192(9):1060-1067. doi: https://doi.org/10.1164/rccm.201505-0894OC
47. Caplin M, Festenstein F. Relation between lung cancer, chronic bronchitis, and airways obstruction. Br Med J. 1975;3:678-680. doi: https://doi.org/10.1136/bmj.3.5985.678
48. Van den Eeden SK, Friedman GD. Forced expiratory volume (1 second) and lung cancer incidence and mortality. Epidemiology. 1992;3(3):253-257. doi: https://doi.org/10.1097/00001648-199205000-00011
49. de Torres JP, Marin JM, Casanova C, et al. Lung cancer in patients with chronic obstructive pulmonary disease -- incidence and predicting factors. Am J Respir Crit Care Med. 2011;184(8):913-919. doi: https://doi.org/10.1164/rccm.201103-0430OC
50. de-Torres JP, Wilson DO, Sanchez-Salcedo P, et al. Lung cancer in patients with chronic obstructive pulmonary disease. Development and validation of the COPD Lung Cancer Screening Score. Am J Respir Crit Care Med. 2015;191(3):285-291. doi: https://doi.org/10.1164/rccm.201407-1210OC
51. Zulueta JJ, Wisnivesky JP, Henschke CI, et al. Emphysema scores predict death from COPD and lung cancer. Chest. 2012;141(5):1216-1223. doi: https://doi.org/10.1378/chest.11-0101
52. Smith BM, Schwartzman K, Kovacina B, et al. Lung cancer histologies associated with emphysema on computed tomography. Lung Cancer. 2012;76(1):61-66. doi: https://doi.org/10.1016/j.lungcan.2011.09.003
53. Hohberger LA, Schroeder DR, Bartholmai BJ, et al. Correlation of regional emphysema and lung cancer: a lung tissue research consortium-based study. J Thorac Oncol. 2014;9(5):639-645. doi: https://doi.org/10.1097/JTO.0000000000000144
54. Schiavon M, Marulli G, Nannini N, et al. COPD-related adenocarcinoma presents low aggressiveness morphological and molecular features compared to smoker tumours. Lung Cancer. 2014;86(3):311-317. doi: https://doi.org/10.1016/j.lungcan.2014.10.004
55. Murakami J, Ueda K, Sano F, Hayashi M, Nishimoto A, Hamano K. Pulmonary emphysema and tumor microenvironment in primary lung cancer. J Surg Res. 2016;200(2):690-697. doi: https://doi.org/10.1016/j.jss.2015.09.004
56. Veronesi G, Maisonneuve P, Bellomi M, et al. Estimating overdiagnosis in low-dose computed tomography screening for lung cancer: a cohort study. Ann Intern Med. 2012;157(11):776-784. doi: https://doi.org/10.7326/0003-4819-157-11-201212040-00005
57. Young RP, Hopkins RJ. Estimating overdiagnosis of lung cancer. Ann Intern Med. 2013;158(8):635. doi: https://doi.org/10.7326/0003-4819-158-8-201304160-00013
58. Maisonneuve P, Veronesi G, Bertolotti R. Estimating overdiagnosis of lung cancer--reply. Ann Intern Med. 2013;158(8):635-636. doi: https://doi.org/10.7326/0003-4819-158-8-201304160-00014
59. Lim JU, Yeo CD, Rhee CK, et al. Chronic obstructive pulmonary disease-related non-small-cell lung cancer exhibits a low prevalence of EGFR and ALK driver mutations. PLoS One. 2015;10(11):e0142306. doi: https://doi.org/10.1371/journal.pone.0142306
60. Hashimoto N, Matsuzaki A, Okada Y, et al. Clinical impact of prevalence and severity of COPD on the decision-making process for therapeutic management of lung cancer patients. BMC Pulm Med. 2014;14:14. doi: https://doi.org/10.1186/1471-2466-14-14
61. Park HY, Kang D, Shin SH, et al. Chronic obstructive pulmonary disease and lung cancer incidence in never smokers: a cohort study. Thorax. 2020;75(6):506-509. doi: https://doi.org/10.1136/thoraxjnl-2019-213732
62. Raymakers AJN, Sadatsafavi M, Sin DD, FitzGerald JM, Marra CA, Lynd LD. Inhaled corticosteroids and the risk of lung cancer in COPD: a population-based cohort study. Eur Respir J. 2019;53(6):1801257. doi: https://doi.org/10.1183/13993003.01257-2018
63. Seijo LM, Soriano JB, Peces-Barba G. New evidence on the chemoprevention of inhaled steroids and the risk of lung cancer in COPD. Eur Respir J. 2019;53(6):1900717. doi: https://doi.org/10.1183/13993003.00717-2019
64. Ge F, Feng Y, Huo Z, et al. Inhaled corticosteroids and risk of lung cancer among chronic obstructive pulmonary disease patients: a comprehensive analysis of nine prospective cohorts. Transl Lung Cancer Res. 2021;10(3):1266-1276. doi: https://doi.org/10.21037/tlcr-20-1126
65. Lee YM, Kim SJ, Lee JH, Ha E. Inhaled corticosteroids in COPD and the risk of lung cancer. Int J Cancer. 2018;143(9):2311-2318. doi: https://doi.org/10.1002/ijc.31632
66. Parimon T, Chien JW, Bryson CL, McDonell MB, Udris EM, Au DH. Inhaled corticosteroids and risk of lung cancer among patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;175(7):712-719. doi: https://doi.org/10.1164/rccm.200608-1125OC
67. Kiri VA, Fabbri LM, Davis KJ, Soriano JB. Inhaled corticosteroids and risk of lung cancer among COPD patients who quit smoking. Respir Med. 2009;103(1):85-90. doi: https://doi.org/10.1016/j.rmed.2008.07.024
68. Sandelin M, Mindus S, Thuresson M, et al. Factors associated with lung cancer in COPD patients. Int J Chron Obstruct Pulmon Dis. 2018;13:1833-1839. doi: https://doi.org/10.2147/COPD.S162484
69. Raymakers AJ, McCormick N, Marra CA, Fitzgerald JM, Sin D, Lynd LD. Do inhaled corticosteroids protect against lung cancer in patients with COPD? A systematic review. Respirology. 2017;22(1):61-70. doi: https://doi.org/10.1111/resp.12919
70. Suissa S, Kezouh A, Ernst P. Inhaled corticosteroids and the risks of diabetes onset and progression. Am J Med. 2010;123(11):1001-1006. doi: https://doi.org/10.1016/j.amjmed.2010.06.019
71. Brenner AV, Wang Z, Kleinerman RA, et al. Previous pulmonary diseases and risk of lung cancer in Gansu Province, China. Int J Epidemiol. 2001;30(1):118-124. doi: https://doi.org/10.1093/ije/30.1.118
72. Kwak N, Park CM, Lee J, et al. Lung cancer risk among patients with combined pulmonary fibrosis and emphysema. Respir Med. 2014;108(3):524-530. doi: https://doi.org/10.1016/j.rmed.2013.11.013
73. Karampitsakos T, Tzilas V, Tringidou R, et al. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm Pharmacol Ther. 2017;45:1-10. doi: https://doi.org/10.1016/j.pupt.2017.03.016
74. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: https://doi.org/10.3322/caac.21492
75. Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019;144(8):1941-1953. doi: https://doi.org/10.1002/ijc.31937
76. Fontana RS, Sanderson DR, Woolner LB, Taylor WF, Miller WE, Muhm JR. Lung cancer screening: the Mayo program. J Occup Med. 1986;28(8):746-750. doi: https://doi.org/10.1097/00043764-198608000-00038
77. Melamed M, Flehinger B, Zaman M. Impact of ealry detection on the clinical course of lung cancer. Surg Clin North Am. 1987;67(5):909-924. doi: https://doi.org/10.1016/S0039-6109(16)44329-X
78. Tockman M. Survival and mortality from lung cancer in a screened population. Chest. 1986;89(4):324S-325S. doi: https://doi.org/10.1378/chest.89.4_Supplement.324S-a
79. Aberle DR, Adams AM, Berg CD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365(5):395-409. doi: https://doi.org/10.1056/NEJMoa1102873
80. de Koning HJ, van der Aalst CM, de Jong PA, et al. Reduced lung-cancer mortality with volume CT screening in a randomized trial. N Engl J Med. 2020;382(6):503-513. doi: https://doi.org/10.1056/NEJMoa1911793
81. Field JK, Duffy SW, Baldwin DR, et al. The UK lung cancer screening trial: a pilot randomised controlled trial of low-dose computed tomography screening for the early detection of lung cancer. Health Technol Assess. 2016;20(40):1-146. doi: https://doi.org/10.3310/hta20400
82. Pastorino U, Sverzellati N, Sestini S, et al. Ten-year results of the Multicentric Italian Lung Detection trial demonstrate the safety and efficacy of biennial lung cancer screening. Eur J Cancer. 2019;118:142-148. doi: https://doi.org/10.1016/j.ejca.2019.06.009
83. Jonas DE, Reuland DS, Reddy SM, et al. Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US preventive services task force. JAMA. 2021;325(10):971-987. doi: https://doi.org/10.1001/jama.2021.0377
84. Saghir Z, Dirksen A, Ashraf H, et al. CT screening for lung cancer brings forward early disease. The randomised Danish lung cancer screening trial: status after five annual screening rounds with low-dose CT. Thorax. 2012;67(4):296-301. doi: https://doi.org/10.1136/thoraxjnl-2011-200736
85. Paci E, Puliti D, Lopes Pegna A, et al. Mortality, survival and incidence rates in the ITALUNG randomised lung cancer screening trial. Thorax. 2017;72(9):825-831. doi: https://doi.org/10.1136/thoraxjnl-2016-209825
86. Becker N, Motsch E, Gross ML, et al. Randomized study on early detection of lung cancer with MSCT in Germany: study design and results of the first screening round. J Cancer Res Clin Oncol. 2012;138:1475-1486. doi: https://doi.org/10.1007/s00432-012-1228-9
87. Becker N, Motsch E, Gross ML, et al. Randomized study on early detection of lung cancer with MSCT in Germany: results of the first 3 years of follow-up after randomization. J Thorac Oncol. 2015;10(6):890-896. doi: https://doi.org/10.1097/JTO.0000000000000530
88. Becker N, Motsch E, Trotter A, et al. Lung cancer mortality reduction by LDCT screening-results from the randomized German LUSI trial. Int J Cancer. 2020;146(6):1503-1513. doi: https://doi.org/10.1002/ijc.32486
89. Infante M, Lutman FR, Cavuto S, et al. Lung cancer screening with spiral CT: baseline results of the randomized DANTE trial. Lung Cancer. 2008;59(3):355-363. doi: https://doi.org/10.1016/j.lungcan.2007.08.040
90. Infante M, Cavuto S, Lutman FR, et al. A randomized study of lung cancer screening with spiral computed tomography: three-year results from the DANTE trial. Am J Respir Crit Care Med. 2009;180(5):445-453. doi: https://doi.org/10.1164/rccm.200901-0076OC
91. Infante M, Cavuto S, Lutman FR, et al. Long-term follow-up results of the DANTE trial, a randomized study of lung cancer screening with spiral computed tomography. Am J Respir Crit Care Med. 2015;191(10):1166-1175. doi: https://doi.org/10.1164/rccm.201408-1475OC
92. Gohagan JK, Marcus PM, Fagerstrom RM, et al. Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer. Lung Cancer. 2005;47(1):9-15. doi: https://doi.org/10.1016/j.lungcan.2004.06.007
93. Kovalchik SA, Tammemagi M, Berg CD, et al. Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med. 2013;369(3):245-254. doi: https://doi.org/10.1056/NEJMoa1301851
94. Church TR, Black WC, Aberle DR, et al. Results of initial low-dose computed tomographic screening for lung cancer. N Engl J Med. 2013;368(21):1980-1991. doi: https://doi.org/10.1056/NEJMoa1209120
95. Pinsky PF, Gierada DS, Hocking W, Patz EF, Kramer BS. National lung screening trial findings by age: medicare-eligible versus under-65 population. Ann Intern Med. 2014;161(9):627-633. doi: https://doi.org/10.7326/M14-1484
96. Lopes Pegna A, Picozzi G, Falaschi F, et al. Four-year results of low-dose CT screening and nodule management in the ITALUNG trial. J Thorac Oncol. 2013;8(7):866-875. doi: https://doi.org/10.1097/JTO.0b013e31828f68d6
97. Croswell JM, Baker SG, Marcus PM, Clapp JD, Kramer BS. Cumulative incidence of false-positive test results in lung cancer screening: a randomized trial. Ann Intern Med. 2010;152(8):505-512. doi: https://doi.org/10.7326/0003-4819-152-8-201004200-00007
98. Wagnetz U, Menezes RJ, Boerner S, et al. CT screening for lung cancer: implication of lung biopsy recommendations. Am J Roentgenol. 2012;198(2):351-358. doi: https://doi.org/10.2214/AJR.11.6726
99. Menezes RJ, Roberts HC, Paul NS, et al. Lung cancer screening using low-dose computed tomography in at-risk individuals: the Toronto experience. Lung Cancer. 2010;67(2):177-183. doi: https://doi.org/10.1016/j.lungcan.2009.03.030
100. Veronesi G, Bellomi M, Mulshine JL, et al. Lung cancer screening with low-dose computed tomography: a non-invasive diagnostic protocol for baseline lung nodules. Lung Cancer. 2008;61(3):340-349. doi: https://doi.org/10.1016/j.lungcan.2008.01.001
101. Swensen SJ, Jett JR, Hartman TE, et al. CT screening for lung cancer: five-year prospective experience. Radiology. 2005;235(1):259-265. doi: https://doi.org/10.1148/radiol.2351041662
102. Walker BL, Williamson C, Regis SM, et al. Surgical outcomes in a large, clinical, low-dose computed tomographic lung cancer screening program. Ann Thorac Surg. 2015;100(4):1218-1223. doi: https://doi.org/10.1016/j.athoracsur.2015.04.112
103. Infante M, Chiesa G, Solomon D, et al. Surgical procedures in the DANTE trial, a randomized study of lung cancer early detection with spiral computed tomography: comparative analysis in the screening and control arm. J Thorac Oncol. 2011;6(2):327-335. doi: https://doi.org/10.1097/JTO.0b013e318200f523
104. Pinsky PF, Gierada DS, Black W, et al. Performance of Lung-RADS in the National Lung Screening Trial: a retrospective assessment. Ann Intern Med. 2015;162(7):485-491. doi: https://doi.org/10.7326/M14-2086
105. Rampinelli C, De Marco P, Origgi D, et al. Exposure to low dose computed tomography for lung cancer screening and risk of cancer: secondary analysis of trial data and risk-benefit analysis. BMJ. 2017;356:j347. doi: https://doi.org/10.1136/bmj.j347
106. Mascalchi M, Belli G, Zappa M, et al. Risk-benefit analysis of x-ray exposure associated with lung cancer screening in the Italung-CT trial. Am J Roentgenol. 2006;187(2):421-429. doi: https://doi.org/10.2214/AJR.05.0088
107. Meza R, Jeon J, Toumazis I, et al. Evaluation of the benefits and harms of lung cancer screening with low-dose computed tomography: a collaborative modeling study for the U.S. preventive services task force. JAMA. 2021;325(10):988-997. doi: https://doi.org/10.1001/jama.2021.1077
108. Hoogendoorn M, Feenstra TL, Hoogenveen RT, Rutten-van Mölken MP. Long-term effectiveness and cost-effectiveness of smoking cessation interventions in patients with COPD. Thorax. 2010;65(8):711-718. doi: https://doi.org/10.1136/thx.2009.131631
109. Ten Haaf K, Tammemägi MC, Bondy SJ, et al. Performance and cost-effectiveness of computed tomography lung cancer screening scenarios in a population-based setting: a microsimulation modeling analysis in Ontario, Canada. PLoS Med. 2017;14(2):e1002225. doi: https://doi.org/10.1371/journal.pmed.1002225
110. Taylor KL, Cox LS, Zincke N, Mehta L, McGuire C, Gelmann E. Lung cancer screening as a teachable moment for smoking cessation. Lung Cancer. 2007;56(1):125-134. doi: https://doi.org/10.1016/j.lungcan.2006.11.015
111. Cox LS, Clark MM, Jett JR, et al. Change in smoking status after spiral chest computed tomography scan screening. Cancer. 2003;98(11):2495-2501. doi: https://doi.org/10.1002/cncr.11813
112. van der Aalst CM, van Klaveren RJ, van den Bergh KA, Willemsen MC, de Koning HJ. The impact of a lung cancer computed tomography screening result on smoking abstinence. Eur Respir J. 2011;37(6):1466-1473. doi: https://doi.org/10.1183/09031936.00035410
113. Townsend CO, Clark MM, Jett JR, et al. Relation between smoking cessation and receiving results from three annual spiral chest computed tomography scans for lung carcinoma screening. Cancer. 2005;103(10):2154-2162. doi: https://doi.org/10.1002/cncr.21045
114. Styn MA, Land SR, Perkins KA, Wilson DO, Romkes M, Weissfeld JL. Smoking behavior 1 year after computed tomography screening for lung cancer: effect of physician referral for abnormal CT findings. Cancer Epidemiol Biomarkers Prev. 2009;18(12):3484-3489. doi: https://doi.org/10.1158/1055-9965.EPI-09-0895
115. Anderson CM, Yip R, Henschke CI, Yankelevitz DF, Ostroff JS, Burns DM. Smoking cessation and relapse during a lung cancer screening program. Cancer Epidemiol Biomarkers Prev. 2009;18(12):3476-3483. doi: https://doi.org/10.1158/1055-9965.EPI-09-0176
116. Clark MA, Gorelick JJ, Sicks JD, et al. The relations between false positive and negative screens and smoking cessation and relapse in the national lung screening trial: implications for public health. Nicotine Tob Res. 2016;18(1):17-24. doi: https://doi.org/10.1093/ntr/ntv037
117. Ashraf H, Tønnesen P, Holst Pedersen J, Dirksen A, Thorsen H, Døssing M. Effect of CT screening on smoking habits at 1-year follow-up in the Danish Lung Cancer Screening Trial (DLCST). Thorax. 2009;64(5):388-392. doi: https://doi.org/10.1136/thx.2008.102475
118. Ashraf H, Saghir Z, Dirksen A, et al. Smoking habits in the randomised Danish Lung Cancer Screening Trial with low-dose CT: final results after a 5-year screening programme. Thorax. 2014;69(6):574-579. doi: https://doi.org/10.1136/thoraxjnl-2013-203849
119. Gareen IF, Duan F, Greco EM, et al. Impact of lung cancer screening results on participant health-related quality of life and state anxiety in the National Lung Screening Trial. Cancer. 2014;120(21):3401-3409. doi: https://doi.org/10.1002/cncr.28833
120. Kaerlev L, Iachina M, Pedersen JH, Green A, Nørgård BM. CT-Screening for lung cancer does not increase the use of anxiolytic or antidepressant medication. BMC Cancer. 2012;12:188. doi: https://doi.org/10.1186/1471-2407-12-188
121. Rasmussen JF, Siersma V, Pedersen JH, Brodersen J. Psychosocial consequences in the Danish randomised controlled lung cancer screening trial (DLCST). Lung Cancer. 2015;87(1):65-72. doi: https://doi.org/10.1016/j.lungcan.2014.11.003
122. van den Bergh KA, Essink-Bot ML, Borsboom GJ, Scholten ET, van Klaveren RJ, de Koning HJ. Long-term effects of lung cancer computed tomography screening on health-related quality of life: the NELSON trial. Eur Respir J. 2011;38(1):154-161. doi: https://doi.org/10.1183/09031936.00123410
123. Aggestrup LM, Hestbech MS, Siersma V, Pedersen JH, Brodersen J. Psychosocial consequences of allocation to lung cancer screening: a randomised controlled trial. BMJ Open. 2012;2(2):e000663. doi: https://doi.org/10.1136/bmjopen-2011-000663
124. Krist AH, Davidson KW, Mangione CM, et al. Screening for lung cancer: US preventive services task force recommendation statement. JAMA. 2021;325(10):962-970. doi: https://doi.org/10.1001/jama.2021.1117
125. Haiman CA, Stram DO, Wilkens LR, et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N Engl J Med. 2006;354(4):333-342. doi: https://doi.org/10.1056/NEJMoa033250
126. Aldrich MC, Mercaldo SF, Sandler KL, Blot WJ, Grogan EL, Blume JD. Evaluation of USPSTF lung cancer screening guidelines among African American adult smokers. JAMA Oncol. 2019;5(9):1318-1324. doi: https://doi.org/10.1001/jamaoncol.2019.1402
127. Kaplan RC, Bangdiwala SI, Barnhart JM, et al. Smoking among U.S. Hispanic/Latino adults: the Hispanic community health study/study of Latinos. Am J Prev Med. 2014;46(5):496-506. doi: https://doi.org/10.1016/j.amepre.2014.01.014
128. Bandiera FC, Assari S, Livaudais-Toman J, Pérez-Stable EJ. Latino and Black smokers in the Health and Retirement Study are more likely to quit: the role of light smoking. Tob Induc Dis. 2016;14:23. doi: https://doi.org/10.1186/s12971-016-0090-y
129. Bach PB, Cramer LD, Schrag D, Downey RJ, Gelfand SE, Begg CB. The influence of hospital volume on survival after resection for lung cancer. N Engl J Med. 2001;345(3):181-188. doi: https://doi.org/10.1056/NEJM200107193450306
130. Sanchez-Salcedo P, Wilson DO, de-Torres JP, et al. Improving selection criteria for lung cancer screening. The potential role of emphysema. Am J Respir Crit Care Med. 2015;191(8):924-931. doi: https://doi.org/10.1164/rccm.201410-1848OC
131. Grover H, Ross T, Fuller E. Implementation of targeted screening for lung cancer in a high-risk population within routine NHS practice using low-dose computed tomography. Thorax. 2020;75(4):348-350. doi: https://doi.org/10.1136/thoraxjnl-2019-214303
132. Jha P. Avoidable global cancer deaths and total deaths from smoking. Nat Rev Cancer. 2009;9:655-664. doi: https://doi.org/10.1038/nrc2703
133. Saul EE, Guerra RB, Saul ME, et al. The challenges of implementing low-dose computed tomography for lung cancer screening in low- and middle-income countries. Nat Cancer. 2020;1:1140-1152. doi: https://doi.org/10.1038/s43018-020-00142-z
134. Li J, Shi L, Liang H, Ding G, Xu L. Urban-rural disparities in health care utilization among Chinese adults from 1993 to 2011. BMC Health Serv Res. 2018;18:102. doi: https://doi.org/10.1186/s12913-018-2905-4
135. Abbasi A, Siddiqi R, Owais A, et al. Prevalence and barriers to lung cancer screening in Karachi, Pakistan: a cross-sectional survey of smokers and physicians. Cureus. 2017;9(5):e1248. doi: https://doi.org/10.7759/cureus.1248
136. Institute for Health Metrics and Evaluation (IHME). Global burden of disease. IHME website. Published 2021. Accessed September 7, 2021. http://www.healthdata.org/gbd/2019.
137. McCarthy EP, Ngo LH, Chirikos TN, et al. Cancer stage at diagnosis and survival among persons with Social Security Disability Insurance on Medicare. Health Serv Res. 2007;42(2):611-628. doi: https://doi.org/10.1111/j.1475-6773.2006.00619.x
138. Lin J, Carter CA, McGlynn KA, et al. A prognostic model to predict mortality among non-small-cell lung cancer patients in the U.S. military health system. J Thorac Oncol. 2015;10(12):1694-1702. doi: https://doi.org/10.1097/JTO.0000000000000691
139. Lin J, McGlynn KA, Carter CA, et al. The impact of preexisting mental health disorders on the diagnosis, treatment, and survival among lung cancer patients in the U.S. military health system. Cancer Epidemiol Biomarkers Prev. 2016;25(12):1564-1571. doi: https://doi.org/10.1158/1055-9965.EPI-16-0316
140. Schapira MM, McAuliffe TL, Nattinger AB. Underutilization of mammography in older breast cancer survivors. Med Care. 2000;38(3):281-289. doi: https://doi.org/10.1097/00005650-200003000-00005
141. Ostrowski M, Marczyk M, Dziedzic R, et al. Lung cancer survival and comorbidities in lung cancer screening participants of the Gdańsk screening cohort. Eur J Public Health. 2019;29(6):1114-1117. doi: https://doi.org/10.1093/eurpub/ckz052
142. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease, 2017 report: GOLD executive summary. Am J Respir Crit Care Med. 2017;49:1700214. doi: https://doi.org/10.1183/13993003.00214-2017
143. Balata H, Harvey J, Barber PV, et al. Spirometry performed as part of the Manchester community-based lung cancer screening programme detects a high prevalence of airflow obstruction in individuals without a prior diagnosis of COPD. Thorax. 2020;75(8):655-660. doi: https://doi.org/10.1136/thoraxjnl-2019-213584
144. Iaccarino JM, Silvestri GA, Wiener RS. Patient-level trajectories and outcomes after low-dose CT screening in the national lung screening trial. Chest. 2019;156(5):965-971. doi: https://doi.org/10.1016/j.chest.2019.06.016
145. Young RP, Hopkins RJ. Chronic obstructive pulmonary disease (COPD) and lung cancer screening. Transl Lung Cancer Res. 2018;7(3):347-360. doi: https://doi.org/10.21037/tlcr.2018.05.04
146. Hadique S, Jain P, Hadi Y, Baig A, Parker JE. Utility of FDG PET/CT for assessment of lung nodules identified during low dose computed tomography screening. BMC Med Imaging. 2020;20:69. doi: https://doi.org/10.1186/s12880-020-00469-0
147. Pritchett MA, Schampaert S, de Groot JAH, Schirmer CC, van der Bom I. Cone-beam CT with augmented fluoroscopy combined with electromagnetic navigation bronchoscopy for biopsy of pulmonary nodules. J Bronchology Interv Pulmonol. 2018;25(4):274-282. doi: https://doi.org/10.1097/LBR.0000000000000536
148. Donington J, Ferguson M, Mazzone P, et al. American College of Chest Physicians and Society of Thoracic Surgeons consensus statement for evaluation and management for high-risk patients with stage I non-small cell lung cancer. Chest. 2012;142(6):1620-1635. doi: https://doi.org/10.1378/chest.12-0790
149. Sekine Y, Yamada Y, Chiyo M, et al. Association of chronic obstructive pulmonary disease and tumor recurrence in patients with stage IA lung cancer after complete resection. Ann Thorac Surg. 2007;84(3):946-950. doi: https://doi.org/10.1016/j.athoracsur.2007.04.038
150. Colice GL, Shafazand S, Griffin JP, Keenan R, Bolliger CT, Physicians ACoC. Physiologic evaluation of the patient with lung cancer being considered for resectional surgery: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest. 2007;132(3):161S-177S. doi: https://doi.org/10.1378/chest.07-1359
151. Marjanski T, Wnuk D, Bosakowski D, Szmuda T, Sawicka W, Rzyman W. Patients who do not reach a distance of 500 m during the 6-min walk test have an increased risk of postoperative complications and prolonged hospital stay after lobectomy. Eur J Cardiothorac Surg. 2015;47(5):e213-219. doi: https://doi.org/10.1093/ejcts/ezv049
152. Nakagawa T, Tomioka Y, Toyazaki T, Gotoh M. Association between values of preoperative 6-min walk test and surgical outcomes in lung cancer patients with decreased predicted postoperative pulmonary function. Gen Thorac Cardiovasc Surg. 2018;66:220-224. doi: https://doi.org/10.1007/s11748-018-0888-z
153. Nikolić I, Majerić-Kogler V, Plavec D, Maloca I, Slobodnjak Z. Stairs climbing test with pulse oximetry as predictor of early postoperative complications in functionally impaired patients with lung cancer and elective lung surgery: prospective trial of consecutive series of patients. Croat Med J. 2008;49(1):50-57. doi: https://doi.org/10.3325/cmj.2008.1.50
154. Makey I, Berger RL, Cabral HJ, Celli B, Folch E, Whyte RI. Maximal oxygen uptake--risk predictor of NSCLC resection in patients with comorbid emphysema: lessons from NETT. Semin Thorac Cardiovasc Surg. 2015;27(2):225-231. doi: https://doi.org/10.1053/j.semtcvs.2015.07.009
155. Ueda K, Murakami J, Tanaka T, Hayashi M, Okabe K, Hamano K. Preoperative risk assessment with computed tomography in patients undergoing lung cancer surgery. J Thorac Dis. 2018;10(7):4101-4108. doi: https://doi.org/10.21037/jtd.2018.06.111
156. Wang CY, Lin YS, Tzao C, et al. Comparison of Charlson comorbidity index and Kaplan-Feinstein index in patients with stage I lung cancer after surgical resection. Eur J Cardiothorac Surg. 2007;32(6):877-881. doi: https://doi.org/10.1016/j.ejcts.2007.09.008
157. Moro-Sibilot D, Aubert A, Diab S, et al. Comorbidities and Charlson score in resected stage I nonsmall cell lung cancer. Eur Respir J. 2005;26(3):480-486. doi: https://doi.org/10.1183/09031936.05.00146004
158. Otake S, Ohtsuka T, Asakura K, Kamiyama I, Kohno M. Impact of comorbidity index on morbidity and survival in non-small cell lung cancer. Asian Cardiovasc Thorac Ann. 2016;24(1):30-33. doi: https://doi.org/10.1177/0218492315617834
159. Kawaguchi Y, Hanaoka J, Ohshio Y, et al. A risk score to predict postoperative complications after lobectomy in elderly lung cancer patients. Gen Thorac Cardiovasc Surg. 2018;66:537-542. doi: https://doi.org/10.1007/s11748-018-0960-8
160. Puri V, Crabtree TD, Bell JM, et al. National cooperative group trials of "high-risk" patients with lung cancer: are they truly "high-risk"? Ann Thorac Surg. 2014;97(5):1678-1683. doi: https://doi.org/10.1016/j.athoracsur.2013.12.028
161. Husain ZA, Kim AW, Yu JB, Decker RH, Corso CD. Defining the high-risk population for mortality after resection of early-stage NSCLC. Clin Lung Cancer. 2015;16(6):e183-187. doi: https://doi.org/10.1016/j.cllc.2015.04.007
162. Kawaguchi Y, Hanaoka J, Ohshio Y, et al. Sarcopenia predicts poor postoperative outcome in elderly patients with lung cancer. Gen Thorac Cardiovasc Surg. 2019;67:949-954. doi: https://doi.org/10.1007/s11748-019-01125-3
163. Kaneda H, Nakano T, Murakawa T. The predictive value of preoperative risk assessments and frailty for surgical complications in lung cancer patients. Surg Today. 2021;51:86-93. doi: https://doi.org/10.1007/s00595-020-02058-8
164. Hu XL, Xu ST, Wang XC, et al. Development and validation of nomogram estimating post-surgery hospital stay of lung cancer patients: relevance for predictive, preventive, and personalized healthcare strategies. EPMA J. 2019;10:173-183. doi: https://doi.org/10.1007/s13167-019-00168-z
165. Shoji F, Haratake N, Akamine T, et al. The preoperative controlling nutritional status score predicts survival after curative surgery in patients with pathological stage I non-small cell lung cancer. Anticancer Res. 2017;37(2):741-747. doi: https://doi.org/10.21873/anticanres.11372
166. Yoshida Y, Kage H, Murakawa T, Sato Y, Ota S, Fukayama M, Nakajima J. Worse prognosis for stage IA lung cancer patients with smoking history and more severe chronic obstructive pulmonary disease. Ann Thorac Cardiovasc Surg. 2015;21(3):194-200. doi: https://doi.org/10.5761/atcs.oa.14-00200
167. Wilson H, Gammon D, Routledge T, Harrison-Phipps K. Clinical and quality of life outcomes following anatomical lung resection for lung cancer in high-risk patients. Ann Thorac Med. 2017;12(2):83-87. doi: https://doi.org/10.4103/atm.ATM_385_16
168. Chua GWY, Chua KLM. Which patients benefit most from stereotactic body radiotherapy or surgery in medically operable non-small cell lung cancer? An in-depth look at patient characteristics on both sides of the debate. Thorac Cancer. 2019;10(10):1857-1867. doi: https://doi.org/10.1111/1759-7714.13160
169. Sandri A, Papagiannopoulos K, Milton R, et al. High-risk patients and postoperative complications following video-assisted thoracic surgery lobectomy: a case-matched comparison with lower-risk counterparts†. Interact Cardiovasc Thorac Surg. 2015;21(Suppl 1):761-765. doi: https://doi.org/10.1093/icvts/ivv204.146
170. Mery CM, Pappas AN, Bueno R, Colson YL, et al. Similar long-term survival of elderly patients with non-small cell lung cancer treated with lobectomy or wedge resection within the surveillance, epidemiology, and end results database. Chest. 2005;128(1):237-245. doi: https://doi.org/10.1378/chest.128.1.237
171. Zhang H, Liu C, Tan Z, Zhang T. Segmentectomy versus wedge resection for Stage I non-small cell lung cancer: a meta-analysis. J Surg Res. 2019;243:371-379. doi: https://doi.org/10.1016/j.jss.2019.05.058
172. Zhao M, Lu T, Huang Y, et al. Survival and long-term cause-specific mortality associated with stage IA lung adenocarcinoma after wedge resection vs. segmentectomy: a population-based propensity score matching and competing risk analysis. Front Oncol. 2019;9:593. doi: https://doi.org/10.3389/fonc.2019.00593
173. Smith CB, Swanson SJ, Mhango G, Wisnivesky JP. Survival after segmentectomy and wedge resection in stage I non-small-cell lung cancer. J Thorac Oncol. 2013;8(1):73-78. doi: https://doi.org/10.1097/JTO.0b013e31827451c4
174. Hou B, Deng XF, Zhou D, Liu QX, Dai JG. Segmentectomy versus wedge resection for the treatment of high-risk operable patients with stage I non-small cell lung cancer: a meta-analysis. Ther Adv Respir Dis. 2016;10(5):435-443. doi: https://doi.org/10.1177/1753465816667121
175. Tsutani Y, Tsubokawa N, Ito M, et al. Postoperative complications and prognosis after lobar resection versus sublobar resection in elderly patients with clinical Stage I non-small-cell lung cancer. Eur J Cardiothorac Surg. 2018;53(2):366-371. doi: https://doi.org/10.1093/ejcts/ezx296
176. Zhang Z, Feng H, Zhao H, et al. Sublobar resection is associated with better perioperative outcomes in elderly patients with clinical stage I non-small cell lung cancer: a multicenter retrospective cohort study. J Thorac Dis. 2019;11(5):1838-1848. doi: https://doi.org/10.21037/jtd.2019.05.20
177. Linden PA, D'Amico TA, Perry Y, et al. Quantifying the safety benefits of wedge resection: a society of thoracic surgery database propensity-matched analysis. Ann Thorac Surg. 2014;98(5):1705-1711. doi: https://doi.org/10.1016/j.athoracsur.2014.06.017
178. Razi SS, John MM, Sainathan S, Stavropoulos C. Sublobar resection is equivalent to lobectomy for T1a non-small cell lung cancer in the elderly: a surveillance, epidemiology, and end results database analysis. J Surg Res. 2016;200(2):683-689. doi: https://doi.org/10.1016/j.jss.2015.08.045
179. Wang W, Sun Y, Li H, et al. Surgical modality for stage IA non-small cell lung cancer among the elderly: analysis of the surveillance, epidemiology, and end results database. J Thorac Dis. 2020;12(11):6731-6742. doi: https://doi.org/10.21037/jtd-20-2221
180. Stiles BM, Mao J, Harrison S, et al. Sublobar resection for node-negative lung cancer 2-5 cm in size. Eur J Cardiothorac Surg. 2019;56(5):858-866. doi: https://doi.org/10.1093/ejcts/ezz146
181. Speicher PJ, Gu L, Gulack BC, et al. Sublobar resection for clinical stage IA non-small-cell lung cancer in the United States. Clin Lung Cancer. 2016;17(1):47-55. doi: https://doi.org/10.1016/j.cllc.2015.07.005
182. Subramanian M, McMurry T, Meyers BF, Puri V, Kozower BD. Long-term results for clinical stage IA lung cancer: comparing lobectomy and sublobar resection. Ann Thorac Surg. 2018;106(2):375-381. doi: https://doi.org/10.1016/j.athoracsur.2018.02.049
183. Mohiuddin K, Haneuse S, Sofer T, et al. Relationship between margin distance and local recurrence among patients undergoing wedge resection for small (≤2 cm) non-small cell lung cancer. J Thorac Cardiovasc Surg. 2014;147(4):1169-1175. doi: https://doi.org/10.1016/j.jtcvs.2013.11.056
184. Stiles BM, Mao J, Harrison S, et al. Extent of lymphadenectomy is associated with oncological efficacy of sublobar resection for lung cancer ≤2 cm. J Thorac Cardiovasc Surg. 2019;157(6):2454-2465.e2451. doi: https://doi.org/10.1016/j.jtcvs.2019.01.136
185. Yendamuri S, Dhillon SS, Groman A, et al. Effect of the number of lymph nodes examined on the survival of patients with stage I non-small cell lung cancer who undergo sublobar resection. J Thorac Cardiovasc Surg. 2018;156(1):394-402. doi: https://doi.org/10.1016/j.jtcvs.2018.03.113
186. Edwards JG, Duthie DJ, Waller DA. Lobar volume reduction surgery: a method of increasing the lung cancer resection rate in patients with emphysema. Thorax. 2001;56(10):791-795. doi: https://doi.org/10.1136/thorax.56.10.791
187. Dupuy DE, Fernando HC, Hillman S, et al. Radiofrequency ablation of stage IA non-small cell lung cancer in medically inoperable patients: results from the American College of Surgeons Oncology Group Z4033 (Alliance) trial. Cancer. 2015;121(19):3491-3498. doi: https://doi.org/10.1002/cncr.29507
188. Kodama H, Yamakado K, Takaki H, et al. Lung radiofrequency ablation for the treatment of unresectable recurrent non-small-cell lung cancer after surgical intervention. Cardiovasc Intervent Radiol. 2012;35:563-569. doi: https://doi.org/10.1007/s00270-011-0220-0
189. Huang L, Han Y, Zhao J, et al. Is radiofrequency thermal ablation a safe and effective procedure in the treatment of pulmonary malignancies? Eur J Cardiothorac Surg. 2011;3(3)9:348-351. doi: https://doi.org/10.1016/j.ejcts.2010.06.004
190. Huang BY, Li XM, Song XY, et al. Long-term results of CT-guided percutaneous radiofrequency ablation of inoperable patients with stage Ia non-small cell lung cancer: a retrospective cohort study. Int J Surg. 2018;53:143-150. doi: https://doi.org/10.1016/j.ijsu.2018.03.034
191. Palussiere J, Lagarde P, Aupérin A, Deschamps F, Chomy F, de Baere T. Percutaneous lung thermal ablation of non-surgical clinical N0 non-small cell lung cancer: results of eight years' experience in 87 patients from two centers. Cardiovasc Intervent Radiol. 2015;38:160-166. doi: https://doi.org/10.1007/s00270-014-0999-6
192. Palussière J, Chomy F, Savina M, et al. Radiofrequency ablation of stage IA non-small cell lung cancer in patients ineligible for surgery: results of a prospective multicenter phase II trial. J Cardiothorac Surg. 2018;13:91. doi: https://doi.org/10.1186/s13019-018-0773-y
193. Beland MD, Wasser EJ, Mayo-Smith WW, Dupuy DE. Primary non-small cell lung cancer: review of frequency, location, and time of recurrence after radiofrequency ablation. Radiology. 2010;254(1):301-307. doi: https://doi.org/10.1148/radiol.00000090174
194. Hiraki T, Gobara H, Mimura H, Matsui Y, Toyooka S, Kanazawa S. Percutaneous radiofrequency ablation of clinical stage I non-small cell lung cancer. J Thorac Cardiovasc Surg. 2011;142(1):24-30. doi: https://doi.org/10.1016/j.jtcvs.2011.02.036
195. Liu H, Steinke K. High-powered percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: a preliminary study. J Med Imaging Radiat Oncol. 2013;57(4):466-474. doi: https://doi.org/10.1111/1754-9485.12068
196. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689-698. doi: https://doi.org/10.1056/NEJMoa1104623
197. Yang X, Ye X, Zheng A, et al. Percutaneous microwave ablation of stage I medically inoperable non-small cell lung cancer: clinical evaluation of 47 cases. J Surg Oncol. 2014;110(6):758-763. doi: https://doi.org/10.1002/jso.23701
198. Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9(7):621-628. doi: https://doi.org/10.1016/S1470-2045(08)70155-4
199. Tada A, Hiraki T, Iguchi T, et al. Influence of radiofrequency ablation of lung cancer on pulmonary function. Cardiovasc Intervent Radiol. 2012;35:860-867. doi: https://doi.org/10.1007/s00270-011-0221-z
200. Moore W, Talati R, Bhattacharji P, Bilfinger T. Five-year survival after cryoablation of stage I non-small cell lung cancer in medically inoperable patients. J Vasc Interv Radiol. 2015;26(3):312-319. doi: https://doi.org/10.1016/j.jvir.2014.12.006
201. Sabath BF, Casal RF. Bronchoscopic ablation of peripheral lung tumors. J Thorac Dis. 2019;11(6):2628-2638. doi: https://doi.org/10.21037/jtd.2019.01.65
202. Ricardi U, Filippi AR, Guarneri A, et al. Stereotactic body radiation therapy for early stage non-small cell lung cancer: results of a prospective trial. Lung Cancer. 2010;68(1):72-77. doi: https://doi.org/10.1016/j.lungcan.2009.05.007
203. Bezjak A, Paulus R, Gaspar LE, et al. Safety and efficacy of a five-fraction stereotactic body radiotherapy schedule for centrally located non-small-cell lung cancer: NRG Oncology/RTOG 0813 Trial. J Clin Oncol. 2019;37(15):1316-1325. doi: https://doi.org/10.1200/JCO.18.00622
204. Tandberg DJ, Tong BC, Ackerson BG, Kelsey CR. Surgery versus stereotactic body radiation therapy for stage I non-small cell lung cancer: a comprehensive review. Cancer. 2018;124(4):667-678. doi: https://doi.org/10.1002/cncr.31196
205. Timmerman R, Paulus R, Galvin J, et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA. 2010;303(11):1070-1076. doi: https://doi.org/10.1001/jama.2010.261
206. Tateishi Y, Takeda A, Horita N, et al. Stereotactic body radiation therapy with a high maximum dose improves local control, cancer-specific death, and overall survival in peripheral early-stage non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2021;111(1):143-151. doi: https://doi.org/10.1016/j.ijrobp.2021.04.014
207. Mahmood S, Bilal H, Faivre-Finn C, Shah R. Is stereotactic ablative radiotherapy equivalent to sublobar resection in high-risk surgical patients with stage I non-small-cell lung cancer? Interact Cardiovasc Thorac Surg. 2013;17(5):845-853. doi: https://doi.org/10.1093/icvts/ivt262
208. Wang H-H, Zhang C-Z, Zhang B-L, et al. Sublobar resection is associated with improved outcomes over radiotherapy in the managment of high-risk elderly patients with Stage I non-small lung cancer: a systematic review and meta-analysis. Oncotarget. 2017;8(4):6033-6042. doi: https://doi.org/10.18632/oncotarget.14010
209. Chang JY, Senan S, Paul MA, et al. Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncol. 2015;16(6):630-637. doi: https://doi.org/10.1016/S1470-2045(15)70168-3
210. Fernando HC, Timmerman R. American College of Surgeons Oncology Group Z4099/Radiation Therapy Oncology Group 1021: a randomized study of sublobar resection compared with stereotactic body radiotherapy for high-risk stage I non-small cell lung cancer. J Thorac Cardiovasc Surg. 2012;144(3):S35-38. doi: https://doi.org/10.1016/j.jtcvs.2012.06.003
211. Lim JU, Yeo CD, Rhee CK, et al. Overall survival of driver mutation-negative non-small cell lung cancer patients with COPD under chemotherapy compared to non-COPD non-small cell lung cancer patients. Int J Chron Obstruct Pulmon Dis. 2018;13:2139-2146. doi: https://doi.org/10.2147/COPD.S167372
212. Izquierdo JL, Resano P, El Hachem A, Graziani D, Almonacid C, Sánchez IM. Impact of COPD in patients with lung cancer and advanced disease treated with chemotherapy and/or tyrosine kinase inhibitors. Int J Chron Obstruct Pulmon Dis. 2014;9:1053-1058. doi: https://doi.org/10.2147/COPD.S68766
213. Leduc C, Antoni D, Charloux A, Falcoz PE, Quoix E. Comorbidities in the management of patients with lung cancer. Eur Respir J. 2017;49(3):1601721. doi: https://doi.org/10.1183/13993003.01721-2016
214. Lim SM, Kim EY, Kim HR, et al. Genomic profiling of lung adenocarcinoma patients reveals therapeutic targets and confers clinical benefit when standard molecular testing is negative. Oncotarget. 2016;7(17):24172-24178. doi: https://doi.org/10.18632/oncotarget.8138
215. Sholl LM. Biomarkers in lung adenocarcinoma: a decade of progress. Arch Pathol Lab Med. 2015;139(4):469-480. doi: https://doi.org/10.5858/arpa.2014-0128-RA
216. Mark NM, Kargl J, Busch SE, et al. Chronic obstructive pulmonary disease alters immune cell composition and immune checkpoint inhibitor efficacy in non-small cell lung cancer. Am J Respir Crit Care Med. 2018;197(3):325-336. doi: https://doi.org/10.1164/rccm.201704-0795OC
217. Shin SH, Park HY, Im Y, et al. Improved treatment outcome of pembrolizumab in patients with nonsmall cell lung cancer and chronic obstructive pulmonary disease. Int J Cancer. 2019;145(9):2433-2439. doi: https://doi.org/10.1002/ijc.32235
218. Cadranel J, Canellas A, Matton L, et al. Pulmonary complications of immune checkpoint inhibitors in patients with nonsmall cell lung cancer. Eur Respir Rev. 2019;28(153):190058. doi: https://doi.org/10.1183/16000617.0058-2019
219. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus Docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627-1639. doi: https://doi.org/10.1056/NEJMoa1507643