1. Marott JL, Ingebrigtsen TS, Çolak Y, Vestbo J, Lange P. Trajectory of preserved ratio impaired spirometry: natural history and long-term prognosis. Am J Respir Crit Care Med. 2021;204(8):910-920. doi: https://doi.org/10.1164/rccm.202102-0517OC
2. Schwartz A, Arnold N, Skinner B, et al. Preserved ratio impaired spirometry in a spirometry database. Respir Care. 2021;66(1):58-65. doi: https://doi.org/10.4187/respcare.07712
3. Wade RC, Simmons JP, Boueiz A, et al. Pulmonary artery enlargement is associated with exacerbations and mortality in ever-smokers with preserved ratio impaired spirometry. Am J Respir Crit Care Med. 2021;204(4):481-485. doi: https://doi.org/10.1164/rccm.202103-0619LE
4. Hogg JC, McDonough JE, Suzuki M. Small airway obstruction in COPD: new insights based on micro-CT imaging and MRI imaging. Chest. 2013;143(5):1436-1443. doi: https://doi.org/10.1378/chest.12-1766
5. McDonough JE, Yuan R, Suzuki M, et al. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N Engl J Med. 2011;365(17):1567-1575. doi: https://doi.org/10.1056/NEJMoa1106955
6. Eddy RL, Svenningsen S, Kirby M, et al. Is computed tomography airway count related to asthma severity and airway structure and function? Am J Respir Crit Care Med. 2020;201(8):923-933. doi: https://doi.org/10.1164/rccm.201908-1552OC
7. Kirby M, Tanabe N, Tan WC, et al. Total airway count on computed tomography and the risk of chronic obstructive pulmonary disease progression. Findings from a population-based study. Am J Respir Crit Care Med. 2018;197(1):56-65. doi: https://doi.org/10.1164/rccm.201704-0692OC
8. Kirby M, Tanabe N, Vasilescu DM, et al. Computed tomography total airway count is associated with the number of micro-computed tomography terminal bronchioles. Am J Respir Crit Care Med. 2020;201(5):613-615. doi: https://doi.org/10.1164/rccm.201910-1948LE
9. Fouka E, Papaioannou AI, Hillas G, Steiropoulos P. Asthma-COPD overlap syndrome: recent insights and unanswered questions. J Pers Med. 2022;12(5):708. doi: https://doi.org/10.3390/jpm12050708
10. Hudler AC, Sharma S. Understanding the genetics of asthma-COPD overlap. Chest. 2022;161(5):1125-1126. doi: https://doi.org/10.1016/j.chest.2022.02.024
11. Jarrell L. Asthma-COPD overlap: the NP's role in diagnosis and management. Nurse Pract. 2022;47(2):25-31. doi: https://doi.org/10.1097/01.NPR.0000806392.71827.cc
12. Leong P, Bardin PG. The untreated treatable trait: cardiovascular disease in COPD exacerbations. Respirology. 2021;26(5):413-415. doi: https://doi.org/10.1111/resp.14036
13. Mannino DM. Asthma, COPD and their overlap: coexistence or something more? Eur Respir J. 2021;58(5):2101329. doi: https://doi.org/10.1183/13993003.01329-2021
14. Rogliani P, Ritondo BL, Laitano R, Chetta A, Calzetta L. Advances in understanding of mechanisms related to increased cardiovascular risk in COPD. Expert Rev Respir Med. 2021;15(1):59-70. doi: https://doi.org/10.1080/17476348.2021.1840982
15. Shnoda M, Gajjar K, Ivanova V. COPD and cardiovascular disease: a review of association, interrelationship, and basic principles for integrated management. Crit Care Nurs Q. 2021;44(1):91-102. doi: https://doi.org/10.1097/CNQ.0000000000000342
16. Soumagne T, Guillien A, Roche N, et al. In patients with mild-to-moderate COPD, tobacco smoking, and not COPD, is associated with a higher risk of cardiovascular comorbidity. Int J Chron Obstruct Pulmon Dis. 2020;15:1545-1555. doi: https://doi.org/10.2147/COPD.S253417
17. Whittaker HR, Bloom C, Morgan A, Jarvis D, Kiddle SJ, Quint JK. Accelerated FEV1 decline and risk of cardiovascular disease and mortality in a primary care population of COPD patients. Eur Respir J. 2021;57(3):2000918. doi: https://doi.org/10.1183/13993003.00918-2020
18. Lee J, Denton E, Hoy R, et al. Paradoxical vocal fold motion in difficult asthma is associated with dysfunctional breathing and preserved lung function. J Allergy Clin Immunol Pract. 2020;8(7):2256-2262. doi: https://doi.org/10.1016/j.jaip.2020.02.037
19. Law N, Ruane LE, Low K, Hamza K, Bardin PG. Dysfunctional breathing is more frequent in chronic obstructive pulmonary disease than in asthma and in health. Respir Physiol Neurobiol. 2018;247:20-23. doi: https://doi.org/10.1016/j.resp.2017.08.011
20. Connolly CK. Dysfunctional breathing in COPD. Thorax. 2003;58(5):460-461. doi: https://doi.org/10.1136/thorax.58.5.460-b
21. Vidotto LS, Carvalho CRF, Harvey A, Jones M. Dysfunctional breathing: what do we know? J Bras Pneumol. 2019;45(01):e20170347. doi: https://doi.org/10.1590/1806-3713/e20170347
22. Kovacs G, Agusti A, Barbera JA, et al. Pulmonary vascular involvement in chronic obstructive pulmonary disease. Is there a pulmonary vascular phenotype? Am J Respir Crit Care Med. 2018;198(8):1000-1011. doi: https://doi.org/10.1164/rccm.201801-0095PP
23. Lewthwaite H, Benedetti A, Stickland MK, et al. Normative peak cardiopulmonary exercise test responses in Canadian adults aged >/=40 years. Chest. 2020;158(6):2532-2545. doi: https://doi.org/10.1016/j.chest.2020.06.074
24. Pistenmaa CL, Nardelli P, Ash SY, et al. Pulmonary arterial pruning and longitudinal change in percent emphysema and lung function: the genetic epidemiology of COPD study. Chest. 2021;160(2):470-480. doi: https://doi.org/10.1016/j.chest.2021.01.084
25. Rahaghi FN, Argemi G, Nardelli P, et al. Pulmonary vascular density: comparison of findings on computed tomography imaging with histology. Eur Respir J. 2019;54(2):1900370. doi: https://doi.org/10.1183/13993003.00370-2019
26. Washko GR, Nardelli P, Ash SY, et al. Arterial vascular pruning, right ventricular size, and clinical outcomes in chronic obstructive pulmonary disease. A longitudinal observational study. Am J Respir Crit Care Med. 2019;200(4):454-461. doi: https://doi.org/10.1164/rccm.201811-2063OC
27. Weatherald J, Philipenko B, Montani D, Laveneziana P. Ventilatory efficiency in pulmonary vascular diseases. Eur Respir Rev. 2021;30(161):200214. doi: https://doi.org/10.1183/16000617.0214-2020
28. Phillips DB, James MD, Elbehairy AF, et al. Reduced exercise tolerance in mild chronic obstructive pulmonary disease: The contribution of combined abnormalities of diffusing capacity for carbon monoxide and ventilatory efficiency. Respirology. 2021;26(8):786-795. doi: https://doi.org/10.1111/resp.14045
29. Muller PT, Saraiva EF. Ventilatory inefficiency during graded exercise in COPD: a pragmatic approach. Clin Physiol Funct Imaging. 2021;41(1):103-109. doi: https://doi.org/10.1111/cpf.12674
30. Caviedes I. Ventilatory inefficiency: a key physiopathological mechanism increasing dyspnea and reducing exercise capacity in chronic obstructive pulmonary disease. J Thorac Dis. 2021;13(7):4614-4617. doi: https://doi.org/10.21037/jtd-21-834
31. Chuang ML. Mechanisms affecting exercise ventilatory inefficiency-airflow obstruction relationship in male patients with chronic obstructive pulmonary disease. Respir Res. 2020;21:206. doi: https://doi.org/10.1186/s12931-020-01463-4
32. Apostolo A, Laveneziana P, Palange P, et al. Impact of chronic obstructive pulmonary disease on exercise ventilatory efficiency in heart failure. Int J Cardiol. 2015;189:134-140. doi: https://doi.org/10.1016/j.ijcard.2015.03.422
33. Neder JA, Berton DC, Arbex FF, et al. Physiological and clinical relevance of exercise ventilatory efficiency in COPD. Eur Respir J. 2017;49(3):1602036. doi: https://doi.org/10.1183/13993003.02036-2016
34. Alencar MC, Arbex FF, Souza A, et al. Does exercise ventilatory inefficiency predict poor outcome in heart failure patients with COPD? J Cardiopulm Rehabil Prev. 2016;36(6):454-459. doi: https://doi.org/10.1097/hcr.0000000000000212
35. Neder JA, Alharbi A, Berton DC, et al. Exercise ventilatory inefficiency adds to lung function in predicting mortality in COPD. COPD. 2016;13(4):416-424. doi: https://doi.org/10.3109/15412555.2016.1158801
36. James MD, Phillips DB, Elbehairy AF, et al. Mechanisms of exertional dyspnea in patients with mild COPD and a low resting DLCO. COPD. 2021;18(5):501-510. doi: https://doi.org/10.1080/15412555.2021.1932782
37. Cutillo A, Perondi R, Turiel M, Monti S. Effects of an inhaled bronchodilator on gas distribution and over-all ventilatory efficiency in patients with chronic obstructive pulmonary disease. Am J Med. 1976;61(1):74-84. doi: https://doi.org/10.1016/0002-9343(76)90043-7
38. Eapen MS, Grover R, Ahuja K, Williams A, Sohal SS. Ventilatory efficiency slope as a predictor of suitability for surgery in chronic obstructive pulmonary disease patients with lung cancer. Ann Transl Med. 2016;4(15):296. doi: https://doi.org/10.21037/atm.2016.07.20
39. Miyazaki A, Miki K, Maekura R, et al. Increased oxygen extraction by pulmonary rehabilitation improves exercise tolerance and ventilatory efficiency in advanced chronic obstructive pulmonary disease. J Clin Med. 2022;11(4):963. doi: https://doi.org/10.3390/jcm11040963
40. Muller PT, Orro GG, Barbosa GW, Saraiva E. A new ventilatory efficiency index and accuracy for early lung diffusion impairment in non-COPD smokers. Respir Physiol Neurobiol. 2021;289:103670. doi: https://doi.org/10.1016/j.resp.2021.103670
41. Phillips DB, Brotto AR, Ross BA, et al. Inhaled nitric oxide improves ventilatory efficiency and exercise capacity in patients with mild COPD: a randomized-control cross-over trial. J Physiol. 2021;599(5):1665-1683. doi: https://doi.org/10.1113/JP280913
42. Piquilloud L, Olivier PY, Richard JC, et al. High flow nasal cannula improves breathing efficiency and ventilatory ratio in COPD patients recovering from an exacerbation. J Crit Care. 2022;69:154023. doi: https://doi.org/10.1016/j.jcrc.2022.154023
43. Soumagne T, Guillien A, Roche N, Dalphin JC, Degano B. Never-smokers with occupational COPD have better exercise capacities and ventilatory efficiency than matched smokers with COPD. J Appl Physiol (1985). 2020;129(6):1257-1266. doi: https://doi.org/10.1152/japplphysiol.00306.2020
44. Bourbeau J, Tan WC, Benedetti A, et al. Canadian cohort obstructive lung disease (CanCOLD): fulfilling the need for longitudinal observational studies in COPD. COPD. 2014;11(2):125-132. doi: https://doi.org/10.3109/15412555.2012.665520
45. Lewthwaite H, Elsewify O, Niro F, et al. Normative cardiopulmonary exercise test responses at the ventilatory threshold in Canadian adults 40 to 80 years of age. Chest. 2021;159(5):1922-1933. doi: https://doi.org/10.1016/j.chest.2020.11.009
46. Global Initiative for Chronic Lung Disease (GOLD). Global strategy for prevention of COPD, 2021 report. GOLD website. Published 2021. Accessed July 2022. https://goldcopd.org/
47. Hueper K, Vogel-Claussen J, Parikh MA, et al. Pulmonary microvascular blood flow in mild chronic obstructive pulmonary disease and emphysema. The MESA COPD study. Am J Respir Crit Care Med. 2015;192(5):570-580. doi: https://doi.org/10.1164/rccm.201411-2120OC
48. Iyer KS, Newell Jr JD, Jin D, et al. Quantitative dual-energy computed tomography supports a vascular etiology of smoking-induced inflammatory lung disease. Am J Respir Crit Care Med. 2016;193(6):652-661. doi: https://doi.org/10.1164/rccm.201506-1196OC
49. Matsuoka S, Washko GR, Dransfield MT, et al. Quantitative CT measurement of cross-sectional area of small pulmonary vessel in COPD: correlations with emphysema and airflow limitation. Acad Radiol. 2010;17(1):93-99. doi: https://doi.org/10.1016/j.acra.2009.07.022
50. Phillips DB, Domnik NJ, Elbehairy AF, et al. Elevated exercise ventilation in mild COPD is not linked to enhanced central chemosensitivity. Respir Physiol Neurobiol. 2021;284:103571. doi: https://doi.org/10.1016/j.resp.2020.103571
51. Elbehairy AF, Ciavaglia CE, Webb KA, et al. Pulmonary gas exchange abnormalities in mild chronic obstructive pulmonary disease. Implications for dyspnea and exercise intolerance. Am J Respir Crit Care Med. 2015;191(12):1384-1394. doi: https://doi.org/10.1164/rccm.201501-0157OC