1.Agustí A, Edwards LD, Rennard SI, et al. Persistent systemic inflammation is associated with poor clinical outcomes in COPD: a novel phenotype. PLoS One. 2012;7(5):e37483. https://doi.org/10.1371/journal.pone.0037483
2. Bhat TA, Panzica L, Kalathil SG, Thanavala Y. Immune dysfunction in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2015;12 (Suppl 2):S169-175. https://doi.org/10.1513/AnnalsATS.201503-126AW
3. Rabe KF, Hurst JR, Suissa S. Cardiovascular disease and COPD: dangerous liaisons? Eur Resp Rev. 2018;27(149):180057. https://doi.org/10.1183/16000617.0057-2018
4. Kunisaki KM, Dransfield MT, Anderson JA, et al. Exacerbations of chronic obstructive pulmonary disease and cardiac events. A post hoc cohort analysis from the SUMMIT randomized clinical trial. Am J Respir Crit Care Med. 2018;198(1):51-57. https://doi.org/10.1164/rccm.201711-2239OC
5. Børvik T, Brækkan SK, Enga K, et al. COPD and risk of venous thromboembolism and mortality in a general population. Eur Respir J. 2016;47(2):473-481. https://doi.org/10.1183/13993003.00402-2015
6. Larsen E, Celi A, Gilbert GE, et al. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell. 1989;59(2):305-312. https://doi.org/10.1016/0092-8674(89)90292-4
7. Pitchford SC, Yano H, Lever R, et al. Platelets are essential for leukocyte recruitment in allergic inflammation. J Allergy Clin Immunol. 2003;112(1):109-118. https://doi.org/10.1067/mai.2003.1514
8. Rendu F, Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets. 2001;12(5):261-273. https://doi.org/10.1080/09537100120068170
9. Vieira-de-Abreu A, Campbell RA, Weyrich AS, Zimmerman GA. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):5-30. https://doi.org/10.1007/s00281-011-0286-4
10. Harrison MT, Short P, Williamson PA, Singanayagam A, Chalmers JD, Schembri S. Thrombocytosis is associated with increased short-and long-term mortality after exacerbation of chronic obstructive pulmonary disease: a role for antiplatelet therapy? Thorax. 2014;69(7):609-615. https://doi.org/10.1136/thoraxjnl-2013-203996
11. Fawzy A, Putcha N, Paulin LM, et al. Association of thrombocytosis with COPD morbidity: the SPIROMICS and COPDGene cohorts. Respir Res. 2018;19(1):20. https://doi.org/10.1186/s12931-018-0717-z
12. Garcia-Pachon E, Baeza-Martinez C, Ruiz-Alcaraz S, Grau-Delgado J. Prediction of three-month readmission based on haematological parameters in patients with severe COPD exacerbation. Adv Respir Med. 2021;89(5):501-504. https://doi.org/10.5603/ARM.a2021.0076
13. El-Gazzar AG, Kamel MH, Elbahnasy OKM, El-Naggar MES. Prognostic value of platelet and neutrophil to lymphocyte ratio in COPD patients. Expert Rev Respir Med. 2020;14(1):111-116. https://doi.org/10.1080/17476348.2019.1675517
14. Huebner ST, Henny S, Giezendanner S, et al. Prediction of acute COPD exacerbation in the Swiss multicenter COPD cohort study (TOPDOCS) by clinical parameters, medication use, and immunological biomarkers. Respiration. 2022;101(5) :1-14. https://doi.org/10.1159/000520196
15. Maclay JD, McAllister DA, Johnston S, et al. Increased platelet activation in patients with stable and acute exacerbation of COPD. Thorax. 2011;66(9):769-774. https://doi.org/10.1136/thx.2010.157529
16. Muñoz-Esquerre M, Ferreiro JL, Huertas D, et al. Impact of acute exacerbations on platelet reactivity in chronic obstructive pulmonary disease patients. Int J Chron Obstruct Pulmon Dis. 2017;13:141-148. https://doi.org/10.2147/COPD.S152660
17. van der Vorm LN, Li L, Huskens D, et al. Acute exacerbations of COPD are associated with a prothrombotic state through platelet-monocyte complexes, endothelial activation and increased thrombin generation. Respir Med. 2020;171:106094. https://doi.org/10.1016/j.rmed.2020.106094
18. Campo G, Pavasini R, Pollina A, Tebaldi M, Ferrari R. On-treatment platelet reactivity in patients with chronic obstructive pulmonary disease undergoing percutaneous coronary intervention. Thorax. 2014;69(1):80-81. https://doi.org/10.1136/thoraxjnl-2013-203608
19. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res. 2006;99(12):1293-1304. https://doi.org/10.1161/01.RES.0000251742.71301.16
20. Jones GL, Saroea HG, Watson RM, O'Byrne PM. Effect of an inhaled thromboxane mimetic (U46619) on airway function in human subjects. Am Rev Respir Dis. 1992;145(6):1270-1274. https://doi.org/10.1164/ajrccm/145.6.1270
21. Barnes PJ, Chung KF, Page CP. Inflammatory mediators of asthma: an update. Pharmacol Rev. 1998;50(4):515-596. https://doi.org/10.1124/pr.56.4.2
22. Ekström MP, Hermansson AB, Ström KE. Effects of cardiovascular drugs on mortality in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(7):715-720. https://doi.org/10.1164/rccm.201208-1565OC
23. Short PM, Lipworth SIW, Elder DHJ, Schembri S, Lipworth BJ. Effect of beta blockers in treatment of chronic obstructive pulmonary disease: a retrospective cohort study. BMJ. 2011;342:d2549. https://doi.org/10.1136/bmj.d2549
24. Goto T, Faridi MK, Camargo CA, Hasegawa K. The association of aspirin use with severity of acute exacerbation of chronic obstructive pulmonary disease: a retrospective cohort study. NPJ Prim Care Respir Med. 2018;28(1):7. https://doi.org/10.1038/s41533-018-0074-x
25. Pavasini R, Biscaglia S, d'Ascenzo F, et al. Antiplatelet treatment reduces all-cause mortality in COPD patients: a systematic review and meta-analysis. COPD. 2016;13(4):509-514. https://doi.org/10.3109/15412555.2015.1099620
26. Ellingsen J, Johansson G, Larsson K, et al. Impact of comorbidities and commonly used drugs on mortality in COPD - real-world data from a primary care setting. Int J Chron Obstruct Pulmon Dis. 2020;15:235-245. https://doi.org/10.2147/COPD.S231296
27. Aaron CP, Schwartz JE, Hoffman EA, et al. A longitudinal cohort study of aspirin use and progression of emphysema-like lung characteristics on CT imaging. Chest. 2018;154(1):41-50. https://doi.org/10.1016/j.chest.2017.11.031
28. Fawzy A, Putcha N, Aaron CP, et al. Aspirin use and respiratory morbidity in COPD: a propensity score-matched analysis in Subpopulations and Intermediate Outcome Measures in COPD Study. Chest. 2019;155(3):519-527. https://doi.org/10.1016/j.chest.2018.11.028
29. Kamath S, Blann AD, Lip GY. Platelet activation: assessment and quantification. Eur Heart J. 2001;22(17):1561-1571. https://doi.org/10.1053/euhj.2000.2515
30. Henn V, Slupsky JR, Gräfe M, et al. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature. 1998;391(6667):591-594. https://doi.org/10.1038/35393
31. Frenette PS, Johnson RC, Hynes RO, Wagner DD. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci U S A. 1995;92(16):7450-7454. https://doi.org/10.1073/pnas.92.16.7450
32. Hansel NN, Putcha N, Woo H, et al. Randomized Clinical Trial of Air Cleaners to Improve Indoor Air Quality and COPD Health: results of the CLEAN AIR STUDY. Am J Respir Crit Care Med. 2022;205(4):421-430. https://doi.org/10.1164/rccm.202103-0604OC
33. American Thoracic Society. Standardization of spirometry, 1994 Update. Am J Respir Crit Care Med. 1995;152(3):1107-1136. https://doi.org/10.1164/ajrccm.152.3.7663792
34. Takx RAP, Jong PA de, Leiner T, et al. Automated coronary artery calcification scoring in non-gated chest CT: agreement and reliability. PLoS One. 2014;9(3):e91239. https://doi.org/10.1371/journal.pone.0091239
35. Shin JM, Kim TH, Kim JY, Park CH. Coronary artery calcium scoring on non-gated, non-contrast chest computed tomography (CT) using wide-detector, high-pitch and fast gantry rotation: comparison with dedicated calcium scoring CT. J Thorac Dis. 2020;12(10):5783-5793. https://doi.org/10.21037/jtd-20-1371
36. Jones PW, Harding G, Berry P, Wiklund I, Chen WH, Leidy NK. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648-654. https://doi.org/10.1183/09031936.00102509
37. Bestall J, Paul E, Garrod R, Garnham R, Jones P, Wedzicha J. Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax. 1999;54(7):581-586. https://doi.org/10.1136/thx.54.7.581
38. Rubin BK, Ramirez O, Ohar JA. Iodinated glycerol has no effect on pulmonary function, symptom score, or sputum properties in patients with stable chronic bronchitis. Chest. 1996;109(2):348-352. https://doi.org/10.1378/chest.109.2.348
39. Leidy NK, Rennard SI, Schmier J, Jones MKC, Goldman M. The breathlessness, cough, and sputum scale: the development of empirically based guidelines for interpretation. Chest. 2003;124(6):2182-2191. https://doi.org/10.1378/chest.124.6.2182
40. van der Molen T, Willemse BWM, Schokker S, ten Hacken NHT, Postma DS, Juniper EF. Development, validity and responsiveness of the Clinical COPD Questionnaire. Health Qual Life Outcomes. 2003;1:13. https://doi.org/10.1186/1477-7525-1-13
41. Jones PW, Quirk FH, Baveystock CM, Littlejohns P. A self-complete measure of health status for chronic airflow limitation. The St George's Respiratory Questionnaire. Am Rev Respir Dis. 1992;145(6):1321-1327. https://doi.org/10.1164/ajrccm/145.6.1321
42. Cazzola M, Hanania NA, MacNee W, Rüdell K, Hackford C, Tamimi N. A review of the most common patient-reported outcomes in COPD - revisiting current knowledge and estimating future challenges. Int J Chron Obstruct Pulmon Dis. 2015;10:725-738. https://doi.org/10.2147/COPD.S77368
43. Kon SSC, Canavan JL, Jones SE, et al. Minimum clinically important difference for the COPD Assessment Test: a prospective analysis. Lancet Respir Med. 2014;2(3):195-203. https://doi.org/10.1016/S2213-2600(14)70001-3
44. Jones PW. St. George's Respiratory Questionnaire: MCID. COPD. 2005;2(1):75-79. https://doi.org/10.1081/COPD-200050513
45. Smid DE, Franssen FME, Houben-Wilke S, et al. Responsiveness and MCID estimates for CAT, CCQ, and HADS in patients with COPD undergoing pulmonary rehabilitation: a prospective analysis. J Am Med Dir Assoc. 2017;18(1):53-58. https://doi.org/10.1016/j.jamda.2016.08.002
46. Sarwar A, Shaw LJ, Shapiro MD, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2(6):675-688. https://doi.org/10.1016/j.jcmg.2008.12.031
47. Howard AL. Leveraging time-varying covariates to test within- and between-person effects and interactions in the multilevel linear model. Emerg Adulthood. 2015;3(6):400-412. https://doi.org/10.1177/2167696815592726
48. Davì G, Catalano I, Averna M, et al. Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med. 1990;322(25):1769-1774. https://doi.org/10.1056/NEJM199006213222503
49. Eldor A, Lellouche F, Goldfarb A, Rachmilewitz EA, Maclouf J. In vivo platelet activation in β-thalassemia major reflected by increased platelet-thromboxane urinary metabolites. Blood. 1991;77(8):1749-1753. https://doi.org/10.1182/blood.V77.8.1749.1749
50. Patrono C, Rocca B. Measurement of thromboxane biosynthesis in health and disease. Front Pharmacol. 2019;10:1244. https://doi.org/10.3389/fphar.2019.01244
51. Fijnheer R, Frijns CJ, Korteweg J, et al. The origin of P-selectin as a circulating plasma protein. Thromb Haemost. 1997;77(6):1081-1085. https://doi.org/10.1055/s-0038-1656116
52. Heeschen C, Dimmeler S, Hamm CW, et al. Soluble CD40 ligand in acute coronary syndromes. New Engl J Med. 2003;348(12):1104-1111. https://doi.org/10.1056/NEJMoa022600
53. Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI. Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation. 2001;104(13):1533-1537. https://doi.org/10.1161/hc3801.095588
54. Gurney D, Lip GYH, Blann AD. A reliable plasma marker of platelet activation: does it exist? Am J Hematol. 2002;70(2):139-144. https://doi.org/10.1002/ajh.10097
55. Pietravalle F, Lecoanet-Henchoz S, Blasey H, et al. Human native soluble CD40L is a biologically active trimer, processed inside microsomes (∗). J Biol Chem. 1996;271(11):5965-5967. https://doi.org/10.1074/jbc.271.11.5965
56. Gresele P, Lopez JA, Kleiman NS, Page CP, eds. Platelets in Thrombotic and Non-thrombotic Disorders. Pathophysiology, Pharmacology and Rherapeutics: An Update. Springer International Publishing; 2017. Accessed May 2022. https://doi.org/10.1007/978-3-319-47462-5
57. Furman MI, Krueger LA, Linden MD, Barnard MR, Frelinger AL, Michelson AD. Release of soluble CD40L from platelets is regulated by glycoprotein IIb/IIIa and actin polymerization. J Am Coll Cardiol. 2004;43(12):2319-2325. https://doi.org/10.1016/j.jacc.2003.12.055
58. Allen IC, Hartney JM, Coffman TM, Penn RB, Wess J, Koller BH. Thromboxane A2 induces airway constriction through an M3 muscarinic acetylcholine receptor-dependent mechanism. Am J Physiol Lung Cell Mol Physiol. 2006;290(3):L526-L533. https://doi.org/10.1152/ajplung.00340.2005
59. Aizawa H, Inoue H, Nakano H, et al. Effects of thromboxane A2 antagonist on airway hyperresponsiveness, exhaled nitric oxide, and induced sputum eosinophils in asthmatics. Prostaglandins, Leukot Essent Fatty Acids. 1998;59(3):185-190. https://doi.org/10.1016/S0952-3278(98)90061-8
60. Hoshino M, Sim J, Shimizu K, Nakayama H, Koya A. Effect of AA-2414, a thromboxane A2 receptor antagonist, on airway inflammation in subjects with asthma. J Allergy Clin Immunol. 1999;103(6):1054-1061. https://doi.org/10.1016/S0091-6749(99)70179-X
61. Nakamura Y, Tamaoki J, Nagase H, et al. Japanese guidelines for adult asthma 2020. Allergol Int. 2020;69(4):519-548. https://doi.org/10.1016/j.alit.2020.08.001
62. Pistenmaa C l., Dashnaw S, Hoffman E a., et al. Pulmonary perfusion in alpha-1 antitrypsin deficiency: a randomized crossover study. Am J Respir Crit Care Med. 2021;203:A2269. https://doi.org/10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A2269