1.World Health Organization (WHO). Global status report on noncommunicable diseases 2010. WHO website. Published 2010. Accessed August 2023. https://www.emro.who.int/noncommunicable-diseases/publications/global-status-report-on-ncds.html
2. Jiang F, Jiang Y, Zhi H, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-243. https://doi.org/10.1136/svn-2017-000101
3. Chen M, Decary M. Artificial intelligence in healthcare: an essential guide for health leaders. Healthc Manage Forum. 2020;33(1):10-18. https://doi.org/10.1177/0840470419873123
4. Okeibunor JC, Jaca A, Iwu-Jaja CJ, et al. The use of artificial intelligence for delivery of essential health services across WHO regions: a scoping review. Front Public Health. 2023;11:1102185. https://doi.org/10.3389/fpubh.2023.1102185
5. Zhang B, Wang J, Chen J, et al. Machine learning in chronic obstructive pulmonary disease. Chin Med J (Engl). 2023;136(5):536-538. https://doi.org/10.1097/CM9.0000000000002247
6. Wang JM, Labaki WW, Murray S, et al. Machine learning for screening of at-risk, mild and moderate COPD patients at risk of FEV1 decline: results from COPDGene and SPIROMICS. Front Physiol. 2023;14:1144192. https://doi.org/10.3389/fphys.2023.1144192
7. Hasenstab KA, Yuan N, Retson T, et al. Automated CT staging of chronic obstructive pulmonary disease severity for predicting disease progression and mortality with a deep learning convolutional neural network [published correction appears in Radiol Cardiothorac Imaging. 2022;4(1):e219002]. Radiol Cardiothorac Imaging. 2021;3(2):e200477. https://doi.org/10.1148/ryct.2021200477
8. Humphries SM, Notary AM, Centeno JP, et al. Deep learning enables automatic classification of emphysema pattern at CT. Radiology. 2020;294(2):434-444. https://doi.org/10.1148/radiol.2019191022
9. González G, Ash SY, Vegas-Sánchez-Ferrero G, et al. Disease staging and prognosis in smokers using deep learning in chest computed tomography. Am J Respir Crit Care Med. 2018;197(2):193-203. https://doi.org/10.1164/rccm.201705-0860OC
10. Altan G, Kutlu Y, Gokçen A. Chronic obstructive pulmonary disease severity analysis using deep learning on multi-channel lung sounds. Turkish J Electr Eng Comput Sci. 2020;28(5):2979-2996. https://doi.org/10.3906/elk-2004-68
11. Das N, Happaerts S, Gyselinck I, et al. Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation. Eur Respir J. 2023;61(5):2201720. https://doi.org/10.1183/13993003.01720-2022
12. Makimoto K, Hogg JC, Bourbeau J, Tan WC, Kirby M. CT imaging with machine learning for predicting progression to COPD in individuals at risk. Chest. 2023;164(5): 1139-1149. https://doi.org/10.1016/j.chest.2023.06.008
13. Chen J, Xu Z, Sun L, et al. Deep learning integration of chest computed tomography imaging and gene expression identifies novel aspects of COPD. Chronic Obstr Pulm Dis. 10(4): 355-368. https://doi.org/10.15326/jcopdf.2023.0399
14. Schaefer R, Khona M, Fiete IR. No free lunch from deep learning in neuroscience: a case study through models of the entorhinal-hippocampal circuit. bioRxiv. 2023:1-16. https://doi.org/10.1101/2022.08.07.503109
15. Tang LYW, Coxson HO, Lam S, Leipsic J, Tam RC, Sin DD. Towards large-scale case-finding: training and validation of residual networks for detection of chronic obstructive pulmonary disease using low-dose CT. Lancet Digit Health. 2020;2(5):e259-e267. https://doi.org/10.1016/S2589-7500(20)30064-9
16. Esther CR Jr, O'Neal WK, Anderson WH, et al. Identification of sputum biomarkers predictive of pulmonary exacerbations in COPD. Chest. 2022;161(5):1239-1249. https://doi.org/10.1016/j.chest.2021.10.049
17. Xiong Y, Ba X, Hou A, et al. Automatic detection of mycobacterium tuberculosis using artificial intelligence. J Thorac Dis. 2018;10(3):1936-1940. https://doi.org/10.21037/jtd.2018.01.91
18. Agusti A, Bel E, Thomas M, et al. Treatable traits: toward precision medicine of chronic airway diseases. Eur Respir J. 2016;47(2):410-419. https://doi.org/10.1183/13993003.01359-2015
19. Stolz D, Mkorombindo T, Schumann DM, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet. 2022;400(10356):921-972. https://doi.org/10.1016/S0140-6736(22)01273-9
20. Fernández ADR, Fernández DR, Iglesias VG, Jorquera DM. Analyzing the use of artificial intelligence for the management of chronic obstructive pulmonary disease (COPD). Int J Med Inform. 2022;158:104640. https://doi.org/10.1016/j.ijmedinf.2021.104640
21. Hricak H, Abdel-Wahab M, Atun R, et al. Medical imaging and nuclear medicine: a Lancet Oncology Commission. Lancet Oncol. 2021;22(4):e136-e172. https://doi.org/10.1016/S1470-2045(20)30751-8
22. Lamprecht B, Soriano JB, Studnicka M, et al. Determinants of underdiagnosis of COPD in national and international surveys. Chest. 2015;148(4):971-985. https://doi.org/10.1378/chest.14-2535
23. Ali AM, Mohammed AA. Improving classification accuracy for prostate cancer using noise removal filter and deep learning technique. Multimed Tools Appl. 2022;81:8653-8669. https://doi.org/10.1007/s11042-022-12102-z
24. Balasubramaniyan S, Jeyakumar V, Nachimuthu DS. Panoramic tongue imaging and deep convolutional machine learning model for diabetes diagnosis in humans. Sci Rep. 2022;12(1):2045-2322. https://doi.org/10.1038/s41598-021-03879-4
25. Agaba AJ, Abdullahi M, Junaidu SB, Hassan, IH, Chiroma, H. Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer). Intell Syst Applicat. 2022;14:200066. https://doi.org/10.1016/j.iswa.2022.200066
26. Babel A, Taneja R, Mondello Malvestiti F, et al. Artificial intelligence solutions to increase medication adherence in patients with non-communicable diseases. Front Digit Health. 2021;3:669869. https://doi.org/10.3389/fdgth.2021.669869
27. Er O, Temurtas F. A study on chronic obstructive pulmonary disease diagnosis using multilayer neural networks. J Med Syst. 2008;32(5):429-432. https://doi.org/10.1007/s10916-008-9148-6
28. Amaral JL, Lopes AJ, Faria AC, Melo PL. Machine learning algorithms and forced oscillation measurements to categorise the airway obstruction severity in chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2015;118(2):186-197. https://doi.org/10.1016/j.cmpb.2014.11.002
29. Badnjevic A, Gurbeta L, Custovic E. An expert diagnostic system to automatically identify asthma and chronic obstructive pulmonary disease in clinical settings. Sci Rep. 2018;8(1):11645. https://doi.org/10.1038/s41598-018-30116-2
30. Wang C, Chen X, Du L, Zhan Q, Yang T, Fang Z. Comparison of machine learning algorithms for the identification of acute exacerbations in chronic obstructive pulmonary disease. Comput Methods Programs Biomed. 2020;188:105267. https://doi.org/10.1016/j.cmpb.2019.105267
31. Peng J, Chen C, Zhou M, Xie X, Zhou Y, Luo CH. A machine-learning approach to forecast aggravation risk in patients with acute exacerbation of chronic obstructive pulmonary disease with clinical indicators [Published correction appears in Sci Rep. 2021 Mar 2;11(1):5324]. Sci Rep. 2020;10(1):3118. https://doi.org/10.1038/s41598-020-60042-1
32. Finnegan A, Potenziani DD, Karutu C, et al. Deploying machine learning with messy, real world data in low- and middle-income countries: Developing a global health use case. Front Big Data. 2022;5:553673. https://doi.org/10.3389/fdata.2022.553673
33. Hung YW, Hoxha K, Irwin BR, Law MR, Grépin KA. Using routine health information data for research in low- and middle-income countries: a systematic review. BMC Health Serv Res. 2020;20(1):790. https://doi.org/10.1186/s12913-020-05660-1
34. Abdul-Rahman T, Ghosh S, Lukman L, et al. Inaccessibility and low maintenance of medical data archive in low-middle income countries: mystery behind public health statistics and measures. J Infect Public Health. 2023;16(10):1556-1561. https://doi.org/10.1016/j.jiph.2023.07.001
35. World Health Organization (WHO). Ethics and governance of artificial intelligence for health. WHO website. Published 2021. Accessed August 21, 2023. https://www.who.int/publications/i/item/9789240029200