1. Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022;399(10342):2227-2242. https://doi.org/10.1016/S0140-6736(22)00470-6
2. Stolz D, Mkorombindo T, Schumann DM, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet. 2022;400(10356):921-972. https://doi.org/10.1016/S0140-6736(22)01273-9
3. He Y, Wen Q, Yao F, Xu D, Huang Y, Wang J. Gut-lung axis: the microbial contributions and clinical implications. Crit Rev Microbiol. 2017;43(1):81-95. https://doi.org/10.1080/1040841X.2016.1176988
4. Budden KF, Gellatly SL, Wood DLA, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol. 2017;15:55-63. https://doi.org/10.1038/nrmicro.2016.142
5. Lai HC, Lin TL, Chen TW, et al. Gut microbiota modulates COPD pathogenesis: role of anti-inflammatory Parabacteroides goldsteinii lipopolysaccharide. Gut. 2022;71(2):309-321. https://doi.org/10.1136/gutjnl-2020-322599
6. Li N, Dai Z, Wang Z, et al. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res. 2021;22:274. https://doi.org/10.1186/s12931-021-01872-z
7. Rutten EPA, Lenaerts K, Buurman WA, Wouters EFM. Disturbed intestinal integrity in patients with COPD. Chest. 2014;145(2):245-252. https://doi.org/10.1378/chest.13-0584
8. Kirschner SK, Deutz NEP, Jonker R, et al. Intestinal function is impaired in patients with chronic obstructive pulmonary disease. Clin Nutr. 2021;40(4):2270-2277. https://doi.org/10.1016/j.clnu.2020.10.010
9. Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172(6):1198-1215. https://doi.org/10.1016/j.cell.2018.02.044
10. Combrink L, Humphreys IR, Washburn Q, et al. Best practice for wildlife gut microbiome research: a comprehensive review of methodology for 16S rRN. gene investigations. Front Microbiol. 2023;14:1092216. https://doi.org/10.3389/fmicb.2023.1092216
11. Knight R, Vrbanac A, Taylor BC, et al. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16:410-422. https://doi.org/10.1038/s41579-018-0029-9
12. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19:77-94. https://doi.org/10.1038/s41579-020-0438-4
13. Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy human gastrointestinal microbiome: composition and function after a decade of exploration. Dig Dis Sci. 2020;65:695-705. https://doi.org/10.1007/s10620-020-06118-4
14. Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11:5886. https://doi.org/10.1038/s41467-020-19701-0
15. Chiu YC, Lee SW, Liu CW, et al. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. PLoS One. 2021;16(4):e0249944. https://doi.org/10.1371/journal.pone.0249944
16. Chiu YC, Lee SW, Liu CW, Lan TY, Wu LSH. Relationship between gut microbiota and lung function decline in patients with chronic obstructive pulmonary disease: a 1-year follow-up study. Respir Res. 2022;23:10. https://doi.org/10.1186/s12931-022-01928-8
17. Oelsner EC, Balte PP, Bhatt SP, et al. Lung function decline in former smokers and low-intensity current smokers: a secondary data analysis of the NHLBI Pooled Cohorts Study. Lancet Respir Med. 2020;8(1):34-44. https://doi.org/10.1016/S2213-2600(19)30276-0
18. Anthonisen NR, Connett JE, Murray RP. Smoking and lung function of lung health study participants after 11 years. Am J Respir Crit Care Med. 2002;166(5):675-679. https://doi.org/10.1164/rccm.2112096
19. Kotlyarov S. Role of short-chain fatty acids produced by gut microbiota in innate lung immunity and pathogenesis of the heterogeneous course of chronic obstructive pulmonary disease. Int J Mol Sci. 2022;23(9):4768. https://doi.org/10.3390/ijms23094768
20. Wypych TP, Wickramasinghe LC, Marsland BJ. The influence of the microbiome on respiratory health. Nat Immunol. 2019;20:1279-1290. https://doi.org/10.1038/s41590-019-0451-9
21. Jang YO, Kim OH, Kim SJ, et al. High-fiber diets attenuate emphysema development via modulation of gut microbiota and metabolism. Sci Rep. 2021;11:7008. https://doi.org/10.1038/s41598-021-86404-x
22. Jang YO, Lee SH, Choi JJ, et al. Fecal microbial transplantation and a high fiber diet attenuates emphysema development by suppressing inflammation and apoptosis. Exp Mol Med. 2020;52:1128-1139. https://doi.org/10.1038/s12276-020-0469-y
23. Szmidt MK, Kaluza J, Harris HR, Linden A, Wolk A. Long-term dietary fiber intake and risk of chronic obstructive pulmonary disease: a prospective cohort study of women. Eur J Nutr. 2020;59:1869-1879. https://doi.org/10.1007/s00394-019-02038-w
24. Corrêa RO, Castro PR, Moser R, et al. Butyrate: connecting the gut-lung axis to the management of pulmonary disorders. Front Nutr. 2022;9:1011732. https://doi.org/10.3389/fnut.2022.1011732
25. Wu Y, Luo Z, Liu C. Variations in fecal microbial profiles of acute exacerbations and stable chronic obstructive pulmonary disease. Life Sci. 2021;265:118738. https://doi.org/10.1016/j.lfs.2020.118738
26. Sun Z, Zhu QL, Shen Y, Yan T, Zhou X. Dynamic changes of gut and lung microorganisms during chronic obstructive pulmonary disease exacerbations. Kaohsiung J Med Sci. 2020;36(2):107-113. https://doi.org/10.1002/kjm2.12147
27. He J, Zhang P, Shen L, et al. Short-chain fatty acids and their association with signalling pathways in inflammation, glucose and lipid metabolism. Int J Mol Sci. 2020;21(17):6356. https://doi.org/10.3390/ijms21176356
28. Ney LM, Wipplinger M, Grossmann M, Engert N, Wegner VD, Mosig AS. Short chain fatty acids: key regulators of the local and systemic immune response in inflammatory diseases and infections. Open Biol. 2023;13:230014. https://doi.org/10.1098/rsob.230014
29. Simpson HL, Campbell BJ. Review article: dietary fibre-microbiota interactions. Aliment Pharmacol Ther. 2015;42(2):158-179. https://doi.org/10.1111/apt.13248
30. Huang YJ, Kim E, Cox MJ, et al. A persistent and diverse airway microbiota present during chronic obstructive pulmonary disease exacerbations. OMICS. 2010;14(1):9-59. https://doi.org/10.1089/omi.2009.0100
31. Ditz B, Christenson S, Rossen J, et al. Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax. 2020;75(4):338-344. https://doi.org/10.1136/thoraxjnl-2019-214168
32. Whiteside SA, McGinniss JE, Collman RG. The lung microbiome: progress and promise. J Clin Invest. 2021;131(15):e150473. https://doi.org/10.1172/JCI150473
33. Wang Z, Bafadhel M, Haldar K, et al. Lung microbiome dynamics in COPD exacerbations. Eur Respir J. 2016;47:1082-1092. https://doi.org/10.1183/13993003.01406-2015
34. Huang YJ, Sethi S, Murphy T, Nariya S, Boushey HA, Lynch SV. Airway microbiome dynamics in exacerbations of chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52(8):2813-2823. https://doi.org/10.1128/JCM.00035-14
35. Huang YJ, Boushey HA. The sputum microbiome in chronic obstructive pulmonary disease exacerbations. Ann Am Thorac Soc. 2015;12(Suppl 2):S176-S180. https://doi.org/10.1513/AnnalsATS.201506-319AW
36. Bafadhel M, Haldar K, Barker B, et al. Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function. Int J Chron Obstruct Pulmon Dis. 2015;10(1):1075-1083. https://doi.org/10.2147/COPD.S80091
37. Wang Z, Singh R, Miller BE, et al. Sputum microbiome temporal variability and dysbiosis in chronic obstructive pulmonary disease exacerbations: an analysis of the COPDMAP study. Thorax. 2018;73(4):331-338. https://doi.org/10.1136/thoraxjnl-2017-210741
38. Beech AS, Lea S, Kolsum U, et al. Bacteria and sputum inflammatory cell counts; a COPD cohort analysis. Respir Res. 2020;21:289. https://doi.org/10.1186/s12931-020-01552-4
39. Wilkinson TMA, Aris E, Bourne S, et al. A prospective, observational cohort study of the seasonal dynamics of airway pathogens in the aetiology of exacerbations in COPD. Thorax. 2017;72(10):919-927. https://doi.org/10.1136/thoraxjnl-2016-209023
40. Damera G, Pham TH, Zhang J, et al. A sputum proteomic signature that associates with increased IL-1β levels and bacterial exacerbations of COPD. Lung. 2016;194:363-369. https://doi.org/10.1007/s00408-016-9877-0
41. Wang Z, Maschera B, Lea S, et al. Airway host-microbiome interactions in chronic obstructive pulmonary disease. Respir Res. 2019;20:113. https://doi.org/10.1186/s12931-019-1085-z
42. Desai H, Eschberger K, Wrona C, et al. Bacterial colonization increases daily symptoms in patients with chronic obstructive pulmonary disease. Ann Am Thorac Soc. 2014;11(3):303-309. https://doi.org/10.1513/AnnalsATS.201310-350OC
43. Tufvesson E, Markstad H, Bozovic G, Ekberg M, Bjermer L. Inflammation and chronic colonization of Haemophilus influenza. in sputum in COPD patients related to the degree of emphysema and bronchiectasis in high-resolution computed tomography. Int J Chron Obstruct Pulmon Dis. 2017;12:3211-3219. https://doi.org/10.2147/COPD.S137578
44. Tufvesson E, Bjermer L, Ekberg M. Patients with chronic obstructive pulmonary disease and chronically colonized with Haemophilus influenza. during stable disease have increased airway inflammation. Int J Chron Obstruct Pulmon Dis. 2015;10(1):881-889. https://doi.org/10.2147/COPD.S78748
45. Malvisi L, Taddei L, Yarraguntla A, Wilkinson TMA, Arora AK, the AERIS Study Group. Sputum sample positivity for Haemophilus influenza. or Moraxella catarrhali. in acute exacerbations of chronic obstructive pulmonary disease: evaluation of association with positivity at earlier stable disease timepoints. Respir Res. 2021;22:67. https://doi.org/10.1186/s12931-021-01653-8
46. Taddei L, Malvisi L, Hui DS, et al. Airway pathogens detected in stable and exacerbated COPD in patients in Asia-Pacific. ERJ Open Res. 2022;8:00057-2022. https://doi.org/10.1183/23120541.00057-2022
47. Garcha DS, Thurston SJ, Patel ARC, et al. Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax. 2012;67(12):1075-1080. https://doi.org/10.1136/thoraxjnl-2012-201924
48. Jacobs DM, Ochs-Balcom HM, Zhao J, Murphy TF, Sethi S. Lower airway bacterial colonization patterns and species-specific interactions in chronic obstructive pulmonary disease. J Clin Microbiol. 2018;56(10):e00330-18. https://doi.org/10.1128/JCM.00330-18
49. Tangedal S, Nielsen R, Aanerud M, et al. Sputum microbiota and inflammation at stable state and during exacerbations in a cohort of chronic obstructive pulmonary disease (COPD) patients. PLoS One. 2019;14(9):e0222449. https://doi.org/10.1371/journal.pone.0222449
50. Xue Q, Xie Y, He Y, et al. Lung microbiome and cytokine profiles in different disease states of COPD: a cohort study. Sci Rep. 2023;13:5715. https://doi.org/10.1038/s41598-023-32901-0
51. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 2019;27(2):105-117. https://doi.org/10.1016/j.tim.2018.11.003
52. Kalema N, Boon SD, Cattamanchi A, et al. Oral antimicrobial rinse to reduce mycobacterial culture contamination among tuberculosis suspects in Uganda: a prospective study. PLoS One. 2012;7(7):e38888. https://doi.org/10.1371/journal.pone.0038888
53. Peres RL, Palaci M, Loureiro RB, et al. Evaluation of oral antiseptic rinsing before sputum collection to reduce contamination of mycobacterial cultures. J Clin Microbiol. 2011;49(8):3058-3060. https://doi.org/10.1128/JCM.00541-11
54. Galiana A, Aguirre E, Rodriguez JC, et al. Sputum microbiota in moderate versus severe patients with COPD. Eur Respir J. 2014;43:1787-1790. https://doi.org/10.1183/09031936.00191513
55. Garcia-Nuñez M, Millares L, Pomares X, et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease. J Clin Microbiol. 2014;52(12):4217-4223. https://doi.org/10.1128/JCM.01967-14
56. Dicker AJ, Huang JTJ, Lonergan M, et al. The sputum microbiome, airway inflammation, and mortality in chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2021;147(1):158-167. https://doi.org/10.1016/j.jaci.2020.02.040
57. Erb-Downward JR, Thompson DL, Han MK, et al. Analysis of the lung microbiome in the "healthy" smoker and in COPD. PLoS ONE. 2011;6(2):e16384. https://doi.org/10.1371/journal.pone.0016384
58. Einarsson GG, Comer DM, McIlreavey L, et al. Community dynamics and the lower airway microbiota in stable chronic obstructive pulmonary disease, smokers and healthy non-smokers. Thorax. 2016;71(9):795-803. https://doi.org/10.1136/thoraxjnl-2015-207235
59. Ramsheh MY, Haldar K, Esteve-Codina A, et al. Lung microbiome composition and bronchial epithelial gene expression in patients with COPD versus healthy individuals: a bacterial 16S rRN. gene sequencing and host transcriptomic analysis. Lancet Microbe. 2021;2(7):e300-e310. https://doi.org/10.1016/S2666-5247(21)00035-5
60. Mac Aogáin M, Lau KJX, Cai Z, et al. Metagenomics reveals a core macrolide resistome related to microbiota in chronic respiratory disease. Am J Respir Crit Care Med. 2020;202(3):433-447. https://doi.org/10.1164/rccm.201911-2202OC
61. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS One. 2012;7(10):e47305. https://doi.org/10.1371/journal.pone.0047305
62. Haldar K, George L, Wang Z, et al. The sputum microbiome is distinct between COPD and health, independent of smoking history. Respir Res. 2020;21:183. https://doi.org/10.1186/s12931-020-01448-3
63. Zakharkina T, Heinzel E, Koczulla RA, et al. Analysis of the airway microbiota of healthy individuals and patients with chronic obstructive pulmonary disease by T-RFLP and clone sequencing. PLoS One. 2013;8(7):e68302. https://doi.org/10.1371/journal.pone.0068302
64. Avalos-Fernandez M, Alin T, Métayer C, Thiébaut R, Enaud R, Delhaes L. The respiratory microbiota alpha-diversity in chronic lung diseases: first systematic review and meta-analysis. Respir Res. 2022;23:214. https://doi.org/10.1186/s12931-022-02132-4
65. Sze MA, Dimitriu PA, Hayashi S, et al. The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(10):1073-1080. https://doi.org/10.1164/rccm.201111-2075OC
66. Wang J, Chai J, Sun L, Zhao J, Chang C. The sputum microbiome associated with different sub-types of AengelECOPD in a Chinese cohort. BMC Infect Dis. 2020;20:610. https://doi.org/10.1186/s12879-020-05313-y
67. Millares L, Pascual S, Montón C, et al. Relationship between the respiratory microbiome and the severity of airflow limitation, history of exacerbations and circulating eosinophils in COPD patients. BMC Pulm Med. 2019;19:112. https://doi.org/10.1186/s12890-019-0867-x
68. Park H, Shin JW, Park SG, Kim W. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One. 2014;9(10):e109710. https://doi.org/10.1371/journal.pone.0109710
69. Garcia-Nuñez M, Marti S, Puig C, et al. Bronchial microbiome, PA biofilm-forming capacity and exacerbation in severe COPD patients colonized by P. aeruginosa. Future Microbiol. 2017;12(5):379-392. https://doi.org/10.2217/fmb-2016-0127
70. Engel M, Endesfelder D, Schloter-Hai B, et al. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome. PLoS One. 2017;12(7):e0180859. https://doi.org/10.1371/journal.pone.0180859
71. Yang CY, Li SW, Chin CY, et al. Association of exacerbation phenotype with the sputum microbiome in chronic obstructive pulmonary disease patients during the clinically stable state. J Transl Med. 2021;19:121. https://doi.org/10.1186/s12967-021-02788-4
72. Barker BL, Haldar K, Patel H, et al. Association between pathogens detected using quantitative polymerase chain reaction with airway inflammation in COPD at stable state and exacerbations. Chest. 2015;147(1):46-55. https://doi.org/10.1378/chest.14-0764
73. Opron K, Begley LA, Erb-Downward JR, et al. Lung microbiota associations with clinical features of COPD in the SPIROMICS cohort. NPJ Biofilms Microbiomes. 2021;7:14. https://doi.org/10.1038/s41522-021-00185-9
74. Madapoosi SS, Cruickshank-Quinn C, Opron K, et al. Lung microbiota and metabolites collectively associate with clinical outcomes in milder stage chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2022;206(4):427-439. https://doi.org/10.1164/rccm.202110-2241OC
75. Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018;16:355-367. https://doi.org/10.1038/s41579-018-0001-8
76. Pragman AA, Knutson KA, Gould TJ, Isaacson RE, Reilly CS, Wendt CH. Chronic obstructive pulmonary disease upper airway microbiota alpha diversity is associated with exacerbation phenotype: a case-control observational study. Respir Res. 2019;20:114. https://doi.org/10.1186/s12931-019-1080-4
77. Li W, Wang B, Tan M, Song X, Xie S, Wang C. Analysis of sputum microbial metagenome in COPD based on exacerbation frequency and lung function: a case control study. Respir Res. 2022;23:321. https://doi.org/10.1186/s12931-022-02246-9
78. Leitao Filho FS, Alotaibi NM, Ngan D, et al. Sputum microbiome is associated with 1-year mortality after chronic obstructive pulmonary disease hospitalizations. Am J Respir Crit Care Med. 2019;199(10):1205-1213. https://doi.org/10.1164/rccm.201806-1135OC
79. Millares L, Ferrari R, Gallego M, et al. Bronchial microbiome of severe COPD patients colonised by Pseudomonas aeruginosa. Eur J Clin Microbiol Infect Dis. 2014;33:1101-1111. https://doi.org/10.1007/s10096-013-2044-0
80. Sze MA, Dimitriu PA, Suzuki M, et al. Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(4):438-445. https://doi.org/10.1164/rccm.201502-0223OC
81. Simpson JL, Baines KJ, Horvat JC, et al. COPD is characterized by increased detection of Haemophilus influenzae, Streptococcus pneumonia. and a deficiency of Bacillu. species. Respirology. 2016;21(4):697-704. https://doi.org/10.1111/resp.12734
82. Ghebre MA, Pang PH, Diver S, et al. Biological exacerbation clusters demonstrate asthma and chronic obstructive pulmonary disease overlap with distinct mediator and microbiome profiles. J Allergy Clin Immunol. 2018;141(6):2027-2036.e12. https://doi.org/10.1016/j.jaci.2018.04.013
83. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for prevention, diagnosis and management of COPD—2024 report. GOLD website. Published 2024. Accessed July 2023. https://goldcopd.org/
84. Adak A, Khan MR. An insight into gut microbiota and its functionalities. Cell Mol Life Sci. 2019;76:473-493. https://doi.org/10.1007/s00018-018-2943-4
85. Wexler AG, Goodman AL. An insider's perspective: Bacteroide. as a window into the microbiome. Nat Microbiol. 2017;2:17026. https://doi.org/10.1038/nmicrobiol.2017.26
86. Lin TL, Shu CC, Chen YM, et al. Like cures like: pharmacological activity of anti-inflammatory lipopolysaccharides from gut microbiome. Front Pharmacol. 2020;11:554. https://doi.org/10.3389/fphar.2020.00554
87. Arora S, Ahmad S, Irshad R, et al. TLRs in pulmonary diseases. Life Sci. 2019;233:116671. https://doi.org/10.1016/j.lfs.2019.116671
88. Kobayashi S, Fujinawa R, Ota F, et al. A single dose of lipopolysaccharide into mice with emphysema mimics human chronic obstructive pulmonary disease exacerbation as assessed by micro-computed tomography. Am J Respir Cell Mol Biol. 2013;49(6):971-977. https://doi.org/10.1165/rcmb.2013-0074OC
89. Larsen JM, Musavian HS, Butt TM, Ingvorsen C, Thysen AH, Brix S. Chronic obstructive pulmonary disease and asthma-associated Proteobacteria, but not commensal Prevotella spp., promote Toll-like receptor 2-independent lung inflammation and pathology. Immunology. 2015;144(2):333-342. https://doi.org/10.1111/imm.12376
90. Di Stefano A, Ricciardolo FLM, Caramori G, et al. Bronchial inflammation and bacterial load in stable COPD is associated with TLR4 overexpression. Eur Respir J. 2017;49:1602006. https://doi.org/10.1183/13993003.02006-2016
91. Horn KJ, Schopper MA, Drigot ZG, Clark SE. Airway Prevotell. promote TLR2-dependent neutrophil activation and rapid clearance of Streptococcus pneumonia. from the lung. Nat Commun. 2022;13:3321. https://doi.org/10.1038/s41467-022-31074-0
92. Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. Proc Natl Acad Sci U S A. 2012;109(15):5809-5814. https://doi.org/10.1073/pnas.1120577109
93. Gleeson K, Maxwell SL, Eggli DF. Quantitative aspiration during sleep in normal subjects. Chest. 1997;111(5):1266-1272. https://doi.org/10.1378/chest.111.5.1266
94. Madan JC, Koestler DC, Stanton BA, et al. Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio. 2012;3(4):e00251-12. https://doi.org/10.1128/mBio.00251-12
95. Benjamin JL, Hedin CRH, Koutsoumpas A, et al. Smokers with active Crohn's disease have a clinically relevant dysbiosis of the gastrointestinal microbiota. Inflamm Bowel Dis. 2012;18(6):1092-1100. https://doi.org/10.1002/ibd.21864
96. Ekbom A, Brandt L, Granath F, Löfdahl CG, Egesten A. Increased risk of both ulcerative colitis and Crohn's disease in a population suffering from COPD. Lung. 2008;186:167-172. https://doi.org/10.1007/s00408-008-9080-z
97. Lee J, Im JP, Han K, et al. Risk of inflammatory bowel disease in patients with chronic obstructive pulmonary disease: a nationwide, population-based study. World J Gastroenterol. 2019;25(42):6354-6364. https://doi.org/10.3748/wjg.v25.i42.6354
98. Wang L, Pelgrim CE, Peralta Marzal LN, et al. Changes in intestinal homeostasis and immunity in a cigarette smoke- and LPS-induced murine model for COPD: the lung-gut axis. Am J Physiol Lung Cell Mol Physiol. 2022;323:L266-L280. https://doi.org/10.1152/ajplung.00486.2021
99. Cheng TY, Chang CC, Luo CS, et al. Targeting lung-gut axis for regulating pollution particle-mediated inflammation and metabolic disorders. Cells. 2023;12(6):901. https://doi.org/10.3390/cells12060901
100. Li N, Yang Z, Liao B, et al. Chronic exposure to ambient particulate matter induces gut microbial dysbiosis in a rat COPD model. Respir Res. 2020;21:271. https://doi.org/10.1186/s12931-020-01529-3
101. McAleer JP, Kolls JK. Contributions of the intestinal microbiome in lung immunity. Eur J Immunol. 2018;48(1):39-49. https://doi.org/10.1002/eji.201646721