1. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the prevention, diagnosis and management of COPD: 2024 report. GOLD website. Published 2024. Accessed August 2024. https://goldcopd.org/2024-gold-report/
2. Ritchie AI, Wedzicha JA. Definition, causes, pathogenesis, and consequences of chronic obstructive pulmonary disease exacerbations. Clin Chest Med. 2020;41(3):421-438. https://doi.org/10.1016/j.ccm.2020.06.007
3. Boers E, Barrett M, Su JG, et al. Global burden of chronic obstructive pulmonary disease through 2050. JAMA Netw Open. 2023;6(12):e2346598. https://doi.org/10.1001/jamanetworkopen.2023.46598
4. Celli BR, Wedzicha JA. Update on clinical aspects of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1257-1266. https://doi.org/10.1056/NEJMra1900500
5. Yin HL, Yin SQ, Lin QY, Xu Y, Xu HW, Liu T. Prevalence of comorbidities in chronic obstructive pulmonary disease patients: a meta-analysis. Medicine (Baltimore). 2017;96(19):e6836. https://doi.org/10.1097/MD.0000000000006836
6. Agusti A, Hogg JC. Update on the pathogenesis of chronic obstructive pulmonary disease. N Engl J Med. 2019;381(13):1248-1256. https://doi.org/10.1056/NEJMra1900475
7. Divo M, Cote C, de Torres JP, et al. Comorbidities and risk of mortality in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;186(2):155-161. https://doi.org/10.1164/rccm.201201-0034OC
8. Stolz D, Mkorombindo T, Schumann DM, et al. Towards the elimination of chronic obstructive pulmonary disease: a Lancet Commission. Lancet. 2022;400(10356):921-972. https://doi.org/10.1016/S0140-6736(22)01273-9
9. MacNee W. Pathology, pathogenesis, and pathophysiology. BMJ. 2006;332(7551):1202-1204. https://doi.org/10.1136/bmj.332.7551.1202
10. Rovina N, Koutsoukou A, Koulouris NG. Inflammation and immune response in COPD: where do we stand? Mediators Inflamm. 2013;2013:413735. https://doi.org/10.1155/2013/413735
11. Poto R, Loffredo S, Palestra F, Marone G, Patella V, Varricchi G. Angiogenesis, lymphangiogenesis, and inflammation in chronic obstructive pulmonary disease (COPD): few certainties and many outstanding questions. Cells. 2022;11(10):1720. https://doi.org/10.3390/cells11101720
12. Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014;35(1):71-86. https://doi.org/10.1016/j.ccm.2013.10.004
13. Wechsler ME, Wells JM. What every clinician should know about inflammation in COPD. ERJ Open Research. 2024;10(5):00177-02024. https://doi.org/10.1183/23120541.00177-2024
14. Polverino F, Cosio BG, Pons J, et al. B cell-activating factor. An orchestrator of lymphoid follicles in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(6):695-705. https://doi.org/10.1164/rccm.201501-0107OC
15. Bloom CI, Montonen J, Jons O, Garry EM, Bhatt SP. First maintenance therapy for chronic obstructive pulmonary disease: retrospective analyses of US and UK healthcare databases. Pulm Ther. 2022;8(1):57-74. https://doi.org/10.1007/s41030-021-00179-0
16. Mannino D, Siddall J, Small M, Haq A, Stiegler M, Bogart M. Treatment patterns for chronic obstructive pulmonary disease (COPD) in the United States: results from an observational cross-sectional physician and patient survey. Int J Chron Obstruct Pulmon Dis. 2022;17:749-761. https://doi.org/10.2147/COPD.S340794
17. Celli B, Vestbo J. Simplifying pharmacotherapy for patients with COPD: a viewpoint. Eur Respir J. 2023;62(2):2300115. https://doi.org/10.1183/13993003.00115-2023
18. Halpin DMG, Dransfield MT, Han MK, et al. The effect of exacerbation history on outcomes in the IMPACT trial. Eur Respir J. 2020;55(5):1901921. https://doi.org/10.1183/13993003.01921-2019
19. Abudagga A, Sun SX, Tan H, Solem CT. Exacerbations among chronic bronchitis patients treated with maintenance medications from a US managed care population: an administrative claims data analysis. Int J Chron Obstruct Pulmon Dis. 2013;2013(8):175-185. https://doi.org/10.2147/COPD.S40437
20. Sethi S, Make BJ, Robinson SB, et al. Relationship of COPD exacerbation severity and frequency on risks for future events and economic burden in the Medicare fee-for-service population. Int J Chron Obstruct Pulmon Dis. 2022;2022(17):593-608. https://doi.org/10.2147/COPD.S350248
21. Chen S, Small M, Lindner L, Xu X. Symptomatic burden of COPD for patients receiving dual or triple therapy. Int J Chron Obstruct Pulmon Dis. 2018;2018(13):1365-1376. https://doi.org/10.2147/COPD.S163717
22. Ding B, DiBonaventura M, Karlsson N, Bergström G, Holmgren U. A cross-sectional assessment of the burden of COPD symptoms in the US and Europe using the National Health and Wellness Survey. Int J Chron Obstruct Pulmon Dis. 2017;2017(12):529-539. https://doi.org/10.2147/COPD.S114085
23. Gruenberger JB, Vietri J, Keininger DL, Mahler DA. Greater dyspnea is associated with lower health-related quality of life among European patients with COPD. Int J Chron Obstruct Pulmon Dis. 2017;2017(12):937-944. https://doi.org/10.2147/COPD.S123744
24. Lu C, Mao X. Risk of adverse reactions associated with inhaled corticosteroids for chronic obstructive pulmonary disease: a meta-analysis. Medicine (Baltimore). 2024;103(3):e36609. https://doi.org/10.1097/MD.0000000000036609
25. Price D, Yawn B, Brusselle G, Rossi A. Risk-to-benefit ratio of inhaled corticosteroids in patients with COPD. Prim Care Respir J. 2013;22(1):92-100. https://doi.org/10.4104/pcrj.2012.00092
26. Pavord ID, Chanez P, Criner GJ, et al. Mepolizumab for eosinophilic chronic obstructive pulmonary disease. N Engl J Med. 2017;377(17):1613-1629. https://doi.org/10.1056/NEJMoa1708208
27. Criner GJ, Celli BR, Brightling CE, et al. Benralizumab for the prevention of COPD exacerbations. N Engl J Med. 2019;381(11):1023-1034. https://doi.org/10.1056/NEJMoa1905248
28. Bhatt SP, Rabe KF, Hanania NA, et al. Dupilumab for COPD with blood eosinophil evidence of type 2 inflammation. N Engl J Med. 2024;390(24):2274-2283. https://doi.org/10.1056/NEJMoa2401304
29. Rabe KF, Celli BR, Wechsler ME, et al. Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respir Med. 2021;9(11):1288-1298. https://doi.org/10.1016/S2213-2600(21)00167-3
30. Phillips JE. Inhaled phosphodiesterase 4 (PDE4) inhibitors for inflammatory respiratory diseases. Front Pharmacol. 2020;11:259. https://doi.org/10.3389/fphar.2020.00259
31. Barjaktarevic IZ, Milstone AP. Nebulized therapies in COPD: past, present, and the future. Int J Chron Obstruct Pulmon Dis. 2020;2020(15):1665-1677. https://doi.org/10.2147/COPD.S252435
32. Sharafkhaneh A, Wolf RA, Goodnight S, Hanania NA, Make BJ, Tashkin DP. Perceptions and attitudes toward the use of nebulized therapy for COPD: patient and caregiver perspectives. COPD. 2013;10(4):482-492. https://doi.org/10.3109/15412555.2013.773302
33. Dumra H, Khanna A, Madhukar SK, Lopez M, Gogtay J. Perceptions and attitudes of patients and their family caregivers on nebulization therapy for COPD. Int J Chron Obstruct Pulmon Dis. 2022;2022(17):2277-2288. https://doi.org/10.2147/COPD.S367819
34. Albert RK, Connett J, Bailey WC, et al. Azithromycin for prevention of exacerbations of COPD. N Engl J Med. 2011;365(8):689-698. https://doi.org/10.1056/NEJMoa1104623
35. Han MK, Tayob N, Murray S, et al. Predictors of chronic obstructive pulmonary disease exacerbation reduction in response to daily azithromycin therapy. Am J Respir Crit Care Med. 2014;189(12):1503-1508. https://doi.org/10.1164/rccm.201402-0207OC
36. Martinez FJ, Calverley PMA, Goehring UM, Brose M, Fabbri LM, Rabe KF. Effect of roflumilast on exacerbations in patients with severe chronic obstructive pulmonary disease uncontrolled by combination therapy (REACT): a multicentre randomised controlled trial. Lancet. 2015;385(9971):857-866. https://doi.org/10.1016/S0140-6736(14)62410-7
37. Joo H, Han D, Lee JH, Rhee CK. Incidence of adverse effects and discontinuation rate between patients receiving 250 micrograms and 500 micrograms of roflumilast: a comparative study. Tuberc Respir Dis (Seoul). 2018;81(4):299-304. https://doi.org/10.4046/trd.2018.0015
38. Rogliani P, Matera MG, Page C, Puxeddu E, Cazzola M, Calzetta L. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and N-acetylcysteine. Respir Res. 2019;20(1):104. https://doi.org/10.1186/s12931-019-1078-y
39. Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther. 2019;197:225-242. https://doi.org/10.1016/j.pharmthera.2019.02.002
40. Epstein PM. Different phosphodiesterases (PDEs) regulate distinct phosphoproteomes during cAMP signaling. Proc Natl Acad Sci U S A. 2017;114(30):7741-7743. https://doi.org/10.1073/pnas.1709073114
41. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13(4):290-314. https://doi.org/10.1038/nrd4228
42. Ahmad F, Murata T, Shimizu K, Degerman E, Maurice D, Manganiello V. Cyclic nucleotide phosphodiesterases: important signaling modulators and therapeutic targets. Oral Dis. 2015;21(1):e25-50. https://doi.org/10.1111/odi.12275
43. Nourian YH, Salimian J, Ahmadi A, et al. cAMP-PDE signaling in COPD: review of cellular, molecular and clinical features. Biochem Biophys Rep. 2023;34:101438. https://doi.org/10.1016/j.bbrep.2023.101438
44. Janjua S, Fortescue R, Poole P. Phosphodiesterase-4 inhibitors for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2020;5(5):Cd002309. https://doi.org/10.1002/14651858.CD002309.pub6
45. Kolb M, Crestani B, Maher TM. Phosphodiesterase 4B inhibition: a potential novel strategy for treating pulmonary fibrosis. Eur Respir Rev. 2023;32(167):220206. https://doi.org/10.1183/16000617.0206-2022
46. Barber R, Baillie GS, Bergmann R, et al. Differential expression of PDE4 cAMP phosphodiesterase isoforms in inflammatory cells of smokers with COPD, smokers without COPD, and nonsmokers. Am J Physiol Lung Cell Mol Physiol. 2004;287(2):L332-343. https://doi.org/10.1152/ajplung.00384.2003
47. Lea S, Metryka A, Facchinetti F, Singh D. Increased expression of phosphodiesterase 4 (PDE4) A, B and D in alveolar macrophages from chronic obstructive pulmonary disease (COPD) patients. Eur Respir J. 2011;38(Suppl 55):217.
48. Li H, Zuo J, Tang W. Phosphodiesterase-4 inhibitors for the treatment of inflammatory diseases. Front Pharmacol. 2018;9:1048. https://doi.org/10.3389/fphar.2018.01048
49. Crocetti L, Floresta G, Cilibrizzi A, Giovannoni MP. An overview of PDE4 inhibitors in clinical trials: 2010 to Early 2022. Molecules. 2022;27(15):4964. https://doi.org/10.3390/molecules27154964
50. Silva PM, Alves AC, Serra MF, et al. Modulation of eotaxin formation and eosinophil migration by selective inhibitors of phosphodiesterase type 4 isoenzyme. Br J Pharmacol. 2001;134(2):283-294. https://doi.org/10.1038/sj.bjp.0704233
51. Jones NA, Boswell-Smith V, Lever R, Page CP. The effect of selective phosphodiesterase isoenzyme inhibition on neutrophil function in vitro. Pulm Pharmacol Ther. 2005;18(2):93-101. https://doi.org/10.1016/j.pupt.2004.10.001
52. Kubo S, Kobayashi M, Iwata M, Miyata K, Takahashi K, Shimizu Y. Anti-neutrophilic inflammatory activity of ASP3258, a novel phosphodiesterase type 4 inhibitor. Int Immunopharmacol. 2012;12(1):59-63. https://doi.org/10.1016/j.intimp.2011.10.011
53. Matsuhira T, Nishiyama O, Tabata Y, et al. A novel phosphodiesterase 4 inhibitor, AA6216, reduces macrophage activity and fibrosis in the lung. Eur J Pharmacol. 2020;885:173508. https://doi.org/10.1016/j.ejphar.2020.173508
54. Turner MJ, Matthes E, Billet A, et al. The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am J Physiol Lung Cell Mol Physiol. 2016;310(1):L59-70. https://doi.org/10.1152/ajplung.00324.2015
55. Mata M, Sarriá B, Buenestado A, Cortijo J, Cerdá M, Morcillo EJ. Phosphodiesterase 4 inhibition decreases MUC5AC expression induced by epidermal growth factor in human airway epithelial cells. Thorax. 2005;60(2):144-152. https://doi.org/10.1136/thx.2004.025692
56. Kubo S, Kobayashi M, Iwata M, Takahashi K, Miyata K, Shimizu Y. Disease-modifying effect of ASP3258, a novel phosphodiesterase type 4 inhibitor, on subchronic cigarette smoke exposure-induced lung injury in guinea pigs. Eur J Pharmacol. 2011;659(1):79-84. https://doi.org/10.1016/j.ejphar.2011.02.042
57. Daxas (roflumilast) [prescribing information]. Södertälje, Sweden: AstraZeneca Pharmaceuticals AB; 2020.
58. Daliresp (roflumilast) [prescribing information].Wilmington, DE: AstraZeneca Pharmaceuticals LP; 2018.
59. Naseem S, Hassan M, Akhtar SN, Syed F, Khan NU, Usman M. Effectiveness of roflumilast in treating chronic obstructive pulmonary disease: a systematic review and meta-analysis. Cureus. 2022;14(3):e22843. https://doi.org/10.7759/cureus.22843
60. Yuan L, Dai X, Yang M, Cai Q, Shao N. Potential treatment benefits and safety of roflumilast in COPD: a systematic review and meta-analysis. Int J Chron Obstruct Pulmon Dis. 2016;2016(11):1477-1483. https://doi.org/10.2147/COPD.S106370
61. Wedzicha JA, Calverley PM, Rabe KF. Roflumilast: a review of its use in the treatment of COPD. Int J Chron Obstruct Pulmon Dis. 2016;2016(11):81-90. https://doi.org/10.2147/COPD.S89849
62. Cilli A, Bal H, Gunen H. Efficacy and safety profile of roflumilast in a real-world experience. J Thorac Dis. 2019;11(4):1100-1105. https://doi.org/10.21037/jtd.2019.04.49
63. Muñoz-Esquerre M, Diez-Ferrer M, Montón C, et al. Roflumilast added to triple therapy in patients with severe COPD: a real life study. Pulm Pharmacol Ther. 2015;30:16-21. https://doi.org/10.1016/j.pupt.2014.10.002
64. Gómez-Rodríguez M, Golpe R. Intolerance to roflumilast in real-life clinical practice. Eur J Intern Med. 2017;43:e28-e29. https://doi.org/10.1016/j.ejim.2017.04.019
65. Facchinetti F, Civelli M, Singh D, Papi A, Emirova A, Govoni M. Tanimilast, a novel inhaled PDE4 inhibitor for the treatment of asthma and chronic obstructive pulmonary disease. Front Pharmacol. 2021;12:740803. https://doi.org/10.3389/fphar.2021.740803
66. Singh D, Beeh KM, Colgan B, et al. Effect of the inhaled PDE4 inhibitor CHF6001 on biomarkers of inflammation in COPD. Respir Res. 2019;20(1):180. https://doi.org/10.1186/s12931-019-1142-7
67. Singh D, Emirova A, Francisco C, Santoro D, Govoni M, Nandeuil MA. Efficacy and safety of CHF6001, a novel inhaled PDE4 inhibitor in COPD: the PIONEER study. Respir Res. 2020;21(1):246. https://doi.org/10.1186/s12931-020-01512-y
68. Beute J, Lukkes M, Koekoek EP, et al. A pathophysiological role of PDE3 in allergic airway inflammation. JCI Insight. 2018;3(2):e94888. https://doi.org/10.1172/jci.insight.94888
69. Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res. 2003;93(4):280-291. https://doi.org/10.1161/01.RES.0000087541.15600.2B
70. Rabe KF, Magnussen H, Dent G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Eur Respir J. 1995;8(4):637-642. https://doi.org/10.1183/09031936.95.08040637
71. Bernareggi MM, Belvisi MG, Patel H, Barnes PJ, Giembycz MA. Anti-spasmogenic activity of isoenzyme-selective phosphodiesterase inhibitors in guinea-pig trachealis. Br J Pharmacol. 1999;128(2):327-336. https://doi.org/10.1038/sj.bjp.0702779
72. Myou S, Fujimura M, Kamio Y, et al. Bronchodilator effect of inhaled olprinone, a phosphodiesterase 3 inhibitor, in asthmatic patients. Am J Respir Crit Care Med. 1999;160(3):817-820. https://doi.org/10.1164/ajrccm.160.3.9812065
73. Myou S, Fujimura M, Kamio Y, et al. Bronchodilator effects of intravenous olprinone, a phosphodiesterase 3 inhibitor, with and without aminophylline in asthmatic patients. Br J Clin Pharmacol. 2003;55(4):341-346. https://doi.org/10.1046/j.1365-2125.2003.01760.x
74. Schmidt DT, Watson N, Dent G, et al. The effect of selective and non-selective phosphodiesterase inhibitors on allergen- and leukotriene C(4)-induced contractions in passively sensitized human airways. Br J Pharmacol. 2000;131(8):1607-1618. https://doi.org/10.1038/sj.bjp.0703725
75. Torphy TJ, Undem BJ, Cieslinski LB, Luttmann MA, Reeves ML, Hay DW. Identification, characterization and functional role of phosphodiesterase isozymes in human airway smooth muscle. J Pharmacol Exp Ther. 1993;265(3):1213-1223.
76. Challiss RA, Adams D, Mistry R, Nicholson CD. Modulation of spasmogen-stimulated Ins(1,4,5)P3 generation and functional responses by selective inhibitors of types 3 and 4 phosphodiesterase in airways smooth muscle. Br J Pharmacol. 1998;124(1):47-54. https://doi.org/10.1038/sj.bjp.0701792
77. Rheault T, MacDonald-Berko M. Antiinflammatory Pharmacology of ensifentrine. Respir Care. 2020;158(4):A2284. https://doi.org/10.1016/j.chest.2020.08.1936
78. Boswell-Smith V, Spina D, Oxford AW, Comer MB, Seeds EA, Page CP. The pharmacology of two novel long-acting phosphodiesterase 3/4 inhibitors, RPL554 [9,10-dimethoxy-2(2,4,6-trimethylphenylimino)-3-(N-carbamoyl-2-aminoethyl)-3,4,6,7-tetrahydro-2 H-pyrimido[6,1-a]isoquinolin-4-one] and RPL565 [6,7-dihydro-2-(2,6-diisopropylphenoxy)-9,10-dimethoxy-4 H-pyrimido[6,1-a]isoquinolin-4-one]. J Pharmacol Exp Ther. 2006;318(2):840-848. https://doi.org/10.1124/jpet.105.099192
79. Singh D, Martinez FJ, Watz H, Bengtsson T, Maurer BT. A dose-ranging study of the inhaled dual phosphodiesterase 3 and 4 inhibitor ensifentrine in COPD. Respir Res. 2020;21(1):47. https://doi.org/10.1186/s12931-020-1307-4
80. Ferguson GT, Kerwin EM, Rheault T, Bengtsson T, Rickard K. A dose-ranging study of the novel inhaled dual PDE 3 and 4 inhibitor ensifentrine in patients with COPD receiving maintenance tiotropium therapy. Int J Chron Obstruct Pulmon Dis. 2021;2021(16):1137-1148. https://doi.org/10.2147/COPD.S307160
81. Singh D, Abbott-Banner K, Bengtsson T, Newman K. The short-term bronchodilator effects of the dual phosphodiesterase 3 and 4 inhibitor RPL554 in COPD. Eur Respir J. 2018;52(5):18010174. https://doi.org/10.1183/13993003.01074-2018
82. Anzueto A, Barjaktarevic IZ, Siler TM, et al. Ensifentrine, a novel phosphodiesterase 3 and 4 inhibitor for the treatment of chronic obstructive pulmonary disease: randomized, double-blind, placebo-controlled, multicenter phase III trials (the ENHANCE Trials). Am J Respir Crit Care Med. 2023;208(4):406-416. https://doi.org/10.1164/rccm.202306-0944OC
83. Verona Pharma announces US FDA approval of Ohtuvayre™ (ensifentrine) [news release]. London and Raliegh, NC: Verona Pharma plc, Investor Relations and Communications Department; June 26, 2024. Accessed August 2024. https://www.veronapharma.com/news/verona-pharma-announces-us-fda-approval-of-ohtuvayre-ensifentrine/
84. Sciurba FC, Christenson SA, Rheault T, Bengtsson T, Rickard K, Barjaktarevic IZ. Dual phosphodiesterase 3 and 4 inhibitor ensifentrine reduces exacerbation rate and risk in patients with moderate to severe COPD. Chest. Available online 27 August 2024. https://doi.org/10.1016/j.chest.2024.07.168
85. Mahler DA, Bhatt SP, Rheault T, et al. Effect of ensifentrine on dyspnea in patients with moderate-to-severe chronic obstructive pulmonary disease: pooled analysis of the ENHANCE trials. Expert Rev Respir Med. 2024;18(8):645-654. https://doi.org/10.1080/17476348.2024.2389960