1. Lomas DA, Mahadeva R. Alpha-1-antitrypsin polymerisation and the serpinopathies: pathobiology and prospects for therapy. J Clin Invest. 2002;110(11):1585-1590. doi: https://doi.org/10.1172/JCI0216782
2. Lomas DA, Evans DL, Finch JT, Carrell RW. The mechanism of Z α1-antitrypsin accumulation in the liver. Nature. 1992;357:605-607. doi: https://doi.org/10.1038/357605a0
3. Kröger H, Miranda E, MacLeod I, et al. Endoplasmic reticulum-associated degradation (ERAD) and autophagy cooperate to degrade polymerogenic mutant serpins. J Biol Chem. 2009;284(34):22793-22802. doi: https://doi.org/10.1074/jbc.M109.027102
4. Miranda E, Pérez J, Ekeowa, et al. A novel monoclonal antibody to characterise pathogenic polymers in liver disease associated with α1-antitrypsin deficiency. Hepatology. 2010;52:1078-1088. doi: https://doi.org/10.1002/hep.23760
5. Eriksson S, Carlson J, Velez R. Risk of cirrhosis and primary liver cancer in alpha1-antitrypsin deficiency. N Engl J Med. 1986;314:736-739. doi: https://doi.org/10.1056/NEJM198603203141202
6. Larsson C. Natural history and life expectancy in severe alpha1-antitrypsin deficiency, PiZ. Acta Med Scand. 1978;204(1-6):345-351. doi: https://doi.org/10.1111/j.0954-6820.1978.tb08452.x
7. Laurell C-B, Eriksson S. The electrophoretic α1-globulin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest. 1963;15(2):132-140. doi: https://doi.org/10.1080/00365516309051324
8. Lomas DA, Hurst JR, Gooptu B. Update on alpha-1 antitrypsin deficiency: new therapies. J Hepatol. 2016;65(2):413-424. doi: https://doi.org/10.1016/j.jhep.2016.03.010
9. Mayer NS, Stoller JK, Bartelson BB, Ruttenber AJ, Sandhaus RA, Newman LS. Occupational exposure risks in Individuals with PI*Z α1-antitrypsin deficiency. Am J Respir Crit Care Med. 2000;162(2):553-558. doi: https://doi.org/10.1164/ajrccm.162.2.9907117
10. Stoller JK, Aboussouan LS. Alpha-1 antitrypsin deficiency. Lancet. 2005;365(9478):2225-2236. doi: https://doi.org/10.1016/S0140-6736(05)66781-5
11. Wewers MD, Casolaro MA, Sellers SE, et al. Replacement therapy for alpha1-antitrypsin deficiency associated with emphysema. N Engl J Med. 1987;316:1055-1062. doi: https://doi.org/10.1056/NEJM198704233161704
12. Dirksen A, Dijkman JH, Madsen F, Stoel B, Hutchison DCS, Ulrik CS, et al. A randomised clinical trial of α1–antitrypsin augmentation therapy. Am J Resp Crit Care Med. 1999;160(5):1468-1472. doi: https://doi.org/10.1164/ajrccm.160.5.9901055
13. Dirksen A, Piitulainen E, Parr DG, et al. Exploring the role of CT densitometry: a randomised study of augmentation therapy in alpha1-antitrypsin deficiency. Eur Respir J. 2009; 33:1345-1353. doi: https://doi.org/10.1183/09031936.00159408
14. Stockley RA, Bayley DL, Unsal I, Dowson LJ. The effect of augmentation therapy on bronchial inflammation in alpha1-antitrypsin deficiency. Am J Respir Crit Care Med.2002;165(11):1494-1498. doi: https://doi.org/10.1164/rccm.2109013
15. Lieberman J. Augmentation therapy reduces frequency of lung infections in antitrypsin deficiency: a new hypothesis with supporting data. Chest. 2000; 118(5):1480-1485. doi: https://doi.org/10.1378/chest.118.5.1480
16. Chapman KR, Burdon JG, Piitulainen E, et al. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9991):360-368. doi: https://doi.org/10.1016/S0140-6736(15)60860-1
17. Mueller C, Flotte TR. Gene-based therapy for alpha-1 antitrypsin deficiency. COPD. 2013;10(Sup 1):44-49. doi: https://doi.org/10.3109/15412555.2013.764978
18. Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nature Med. 1997;3(6):675-677. doi: https://doi.org/10.1038/nm0697-675
19. Stolk J, Stockley RA, Stoel BC, et al. Randomized controlled trial for emphysema with a selective agonist of the gamma type retinoic acid receptor. Eur Respir J. 2012;40:306-312. doi: https://doi.org/10.1183/09031936.00161911
20. Stoller JK, Gildea TR, Ries AL, Meli YM, Karafa MT, National Emphysema Treatment Trial Research Group. Lung volume reduction surgery in patients with emphysema and alpha-1 antitrypsin deficiency. Ann Thorac Surg. 2007;83(1):241-251. doi: https://doi.org/10.1016/j.athoracsur.2006.07.080
21. Donahue JM, Cassivi SD. Lung volume reduction surgery for patients with alpha-1 antitrypsin deficiency emphysema. Thorac Surg Clin. 2009;19(2):201-208. doi: https://doi.org/10.1016/j.thorsurg.2009.02.002
22. Hillerdal G, Mindus S. One- to four-year follow-up of endobronchial lung volume reduction in alpha-1-antitrypsin deficiency patients: a case series. Respiration. 2014;88(4):320-328. doi: https://doi.org/10.1159/000365662
23. Graham KS, Le A, Sifers RN. Accumulation of the insoluble PiZ variant of human α1-antitrypsin within the hepatic endoplasmic reticulum does not elevate the steady-state level of grp78/BiP. J Biol Chem. 1990;265(33):20463-20468.
24. Lawless MW, Greene CM, Mulgrew A, Taggert CC, O'Neill SJ, McElvaney NG. Activation of endoplasmic reticulum-specific stress responses associated with the conformational disease Z α1-antitrypsin deficiency. J Immunol. 2004;172:5722-5726. doi: https://doi.org/10.4049/jimmunol.172.9.5722
25. Hidvegi T, Mirnics K, Hale P, Ewing M, Beckett C, Perlmutter DH. Regulator of G signaling 16 is a marker for the distinct ER stress state associated with aggregated mutant alpha 1-antitrypsin Z in the classical form of α1-antitrypsin deficiency. J Biol Chem. 2007;282: 27769-27780. doi: https://doi.org/10.1074/jbc.M704330200
26. Ordonez A, Snapp EL, Tan L, Miranda E, Marciniak SJ, Lomas DA. Endoplasmic reticulum polymers impair luminal protein mobility and sensitize to cellular stress in alpha1-antitrypsin deficiency. Hepatology. 2013;57(5):2049-2060. doi: https://doi.org/10.1002/hep.26173
27. Carlson JA, Barton Rogers B, Sifers RN, et al. Accumulation of PiZ α1-antitrypsin causes liver damage in transgenic mice. J Clin Invest. 1989;83:1183-1190. doi: https://doi.org/10.1172/JCI113999
28. Pastore N, Attanasio S, Granese B, et al. Activation of JNK pathway aggravates proteotoxicity of hepatic mutant Z alpha1-antitrypsin. Hepatology. 2017;65(6). doi: https://doi.org/10.1002/hep.29035
29. Rashid ST, Lomas DA. Liver: Taking out the JuNK to treat α1-antitrypsin AAT deficiency. Nat Rev Gastroenterol Hepatol. 2017;14:201-202. doi: https://doi.org/10.1038/nrgastro.2017.22
30. Devlin GL, Parfrey H, Tew DJ, Lomas DA, Bottomley SP. Prevention of polymerization of M and Z α1-antitrypsin (α1-AT) with Trimethylamine N-Oxide. Implications for the treatment of α1-AT deficiency. Am J Respir Cell Mol Biol. 2001;24(6):727-732. doi: https://doi.org/10.1165/ajrcmb.24.6.4407
31. Sharp LK, Mallya M, Kinghorn KJ, et al. Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis. FEBS J. 2006;273(11):2540-2552. doi: https://doi.org/10.1111/j.1742-4658.2006.05262.x
32. Burrows JAJ, Willis LK, Perlmutter DH. Chemical chaperones mediate increased secretion of mutant α1-antitrypsin (α1-AT) Z: a potential pharmacologcial strategy for prevention of liver injury and emphysema. Proc Natl Acad Sci USA. 2000;97 (4):1796-1801. doi: https://doi.org/10.1073/pnas.97.4.1796
33. Teckman JH. Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr. 2004;39(1):34-37. doi: https://doi.org/10.1097/00005176-200407000-00007
34. Bouchecareilha M, Hutta DM, Szajnera P, Flotte TR, Balch WE. Histone Deacetylase inhibitor (HDACi) Suberoylanilide Hydroxamic Acid (SAHA) mediated correction of alpha-1 antitrypsin deficiency. J Biol Chem. 2012;287 (45):38265-38278. doi: https://doi.org/10.1074/jbc.M112.404707
35. Hidvegi T, Ewing M, Hale P, et al. An autophagy-enhancing drug promotes degradation of mutant alpha1-antitrypsin Z and reduces hepatic fibrosis. Science. 2010;329(5988):229-232. doi: https://doi.org/10.1126/science.1190354
36. National Institutes of Health. Carbamazepine in severe liver disease due to alpha-1 antitrypsin deficiency (CBZ). Clinicaltrials.gov website. https://clinicaltrials.gov/ct2/show/NCT01379469. Published 2011.Accessed January 2018.
37. Zhang L, Yu J, Pan H, et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA. 2007;104(48):19023-19028. doi: https://doi.org/10.1073/pnas.0709695104
38. Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol. 2005;170(7):1101-1111. doi: https://doi.org/10.1083/jcb.200504035
39. Kaushal S, Annamali M, Blomenkamp K, et al. Rapamycin reduces intrahepatic alpha-1-antitrypsin mutant Z protein polymers and liver injury in a mouse model. Exp Biol Med (Maywood). 2010;235(6):700-709. doi: https://doi.org/10.1258/ebm.2010.009297
40. Pastore N, Ballabio A, Brunetti-Pierri N. Autophagy master regulator TFEB induces clearance of toxic SERPINA1/α-1-antitrypsin polymers. Autophagy. 2013;9(7):1094-1096. doi: https://doi.org/10.4161/auto.24469
41. Wooddell CI, Blomenkamp KS, Kanner S, et al. A hepatocyte-targeted RNAi-based treatment for liver disease associated with alpha-1-antitrypsin deficiency. Paper presented at: 65th Annual Meeting of the American Association for the Study of Liver Diseases; November 7-11, 2014; Boston, MA
42. Sehgal A, Blomenkamp KS, Qian K, et al. Pre-clinical evaluation of ALN-AAT to ameliorate liver disease associated with alpha-1-antitrypsin deficiency. Gastroenterology. 2015;148(4): S-975.
43. Guo S, Booten SL, Aghajan M, et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest. 2014;124(1):251-261. doi: https://doi.org/10.1172/JCI67968
44. National Institutes of Health. A study of an investigational drug, ALN-AAT, in healthy adult subjects and patients with ZDD type alpha-1 antitrypsin deficiency liver disease. Clinical trials.gov website. https://clinicaltrials.gov/ct2/show/NCT02503683 Published 2015. Accessed January 2018.
45. Fierce Biotech. Alnylam down as it halts development for RNAi liver disease candidate. Fierce Biotech website. www.fiercebiotech.com/biotech/alnylam-down-as-it-halts-development-for-mai-liver-disease-candidate. Published September 2016. Accessed January 2018.
46. National Institutes of Health. A study of ARC-AAT in healthy volunteer subjects and patients with alpha-1 antitrypsin deficiency(AATD). Clinical Trials.gov website. https://clinicaltrials.gov/ct2/show/NCT02363946 Published 2015. Accessed January 2018.
47. Arrowhead Pharmaceuticals presents new data on ARC-AAT [press release]. Pasadena, CA: Business Wire; November 14, 2016. http://ir.arrowheadpharma.com/news-releases/news-release-details/arrowhead-pharmaceuticals-presents-new-data-arc-aat. Accessed January 2018.
48. National Institutes of Health. Safety, tolerability and effect of ARC-AAT injection on circulating and intrahepatic alpha-1 antitrypsin levels. Clinical Trials.gov website. https://clinicaltrials.gov/ct2/show/NCT02900183 Published September 2016. Updated May 2017. Accessed January 2018.
49. Dafforn TR, Mahadeva R, Elliott PR, Sivasothy P, Lomas DA. A kinetic mechanism for the polymerisation of α1-antitrypsin. J Biol Chem. 1999;274:9548-555. doi: https://doi.org/10.1074/jbc.274.14.9548
50. Gooptu B, Hazes B, Chang W-SW, et al. Inactive conformation of the serpin α1-antichymotrypsin indicates two stage insertion of the reactive loop; implications for inhibitory function and conformational disease. Proc Natl Acad Sci USA. 2000;97(1):67-72. doi: https://doi.org/10.1073/pnas.97.1.67
51. Gooptu B, Miranda E, Nobeli I, et al. Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of alpha-1-antitrypsin: implications for disease and drug design. J Mol Biol. 2009;387(4):857-868. doi: https://doi.org/10.1016/j.jmb.2009.01.069
52. Nyon MP, Segu L, Cabrita LD, et al. Structural dynamics associated with intermediate formation in an archetypal conformational disease. Structure. 2012;20(3):504-512. doi: https://doi.org/10.1016/j.str.2012.01.012
53. Ekeowa UI, Freekeb J, Miranda E, et al. Defining the mechanism of polymerization in the serpinopathies. Proc Natl Acad Sci USA. 2010;107(40):17146-17151. doi: https://doi.org/10.1073/pnas.1004785107
54. Lomas DA, Finch JT, Seyama K, Nukiwa T, Carrell RW. Alpha-1-antitrypsin Siiyama (Ser53Phe); further evidence for intracellular loop-sheet polymerisation. J Biol Chem. 1993;268:15333-15335.
55. Lomas DA, Elliott PR, Sidhar SK, et al. Alpha-1-antitrypsin Mmalton (52Phe deleted) forms loop-sheet polymers in vivo: evidence for the C sheet mechanism of polymerisation. J Biol Chem. 1995;270(28):16864-16870. doi: https://doi.org/10.1074/jbc.270.28.16864
56. Elliott PR, Stein PE, Bilton D, Carrell RW, Lomas DA. Structural explanation for the dysfunction of S α1-antitrypsin. Nat Struct Biol. 1996;3(10):910-911. doi: https://doi.org/10.1038/nsb1196-910
57. Mahadeva R, Chang W-SW, Dafforn TR, et al. Heteropolymerisation of S, I and Z α1-antitrypsin and liver cirrhosis. J Clin Invest. 1999;103:999-1006. doi: https://doi.org/10.1172/JCI4874
58. Haq I, Irving JA, Saleh AD, et al. Deficiency mutations of α1-antitrypsin differentially affect folding, function and polymerization. Am J Resp Cell Mol Biol. 2016;2016(1):71-80. doi: https://doi.org/10.1165/rcmb.2015-0154OC
59. Lomas DA, Evans DL, Stone SR, Chang W-SW, Carrell RW. Effect of the Z mutation on the physical and inhibitory properties of α1-antitrypsin. Biochemistry. 1993;32:500-508. doi: https://doi.org/10.1021/bi00053a014
60. Skinner R, Chang W-SW, Jin L, et al. Implications for function and therapy of a 2.9Å structure of binary-complexed antithrombin. J Mol Biol. 1998;283(1):9-14. doi: https://doi.org/10.1006/jmbi.1998.2083
61. Mahadeva R, Dafforn TR, Carrell RW, Lomas DA. Six-mer peptide selectively anneals to a pathogenic serpin conformation and blocks polymerisation: implications for the prevention of Z α1-antitrypsin related cirrhosis. J Biol Chem. 2002;277(9):6771-6774. doi: https://doi.org/10.1074/jbc.C100722200
62. Parfrey H, Dafforn TR, Belorgey D, Lomas DA, Mahadeva R. Inhibiting polymerisation: new therapeutic strategies for Z α1-antitrypsin related emphysema. Am J Respir Cell Mol Biol. 2004;31(2):133-139. doi: https://doi.org/10.1165/rcmb.2003-0276OC
63. Zhou A, Stein PE, Huntington JA, Sivasothy P, Lomas DA, Carrell RW. How small peptides block and reverse serpin polymerization. J Mol Biol. 2004;342(3):931-941. doi: https://doi.org/10.1016/j.jmb.2004.07.078
64. Nyon MP, Prentice T, Day J, et al. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography and NMR spectroscopy to study the conformational dynamics of α1-antitrypsin upon ligand binding. Protein Sci. 2015;24:1301-1312. doi: https://doi.org/10.1002/pro.2706
65. Elliott PR, Pei XY, Dafforn TR, Lomas DA. Topography of a 2.0Å structure of α1-antitrypsin reveals targets for rational drug design to prevent conformational disease. Protein Science. 2000;9:1274-1281. doi: https://doi.org/10.1110/ps.9.7.1274
66. Parfrey H, Mahadeva R, Ravenhill NA, et al. Targeting a surface cavity of α1-antitrypsin to prevent conformational disease. J Biol Chem. 2003;278(35):33060-33066. doi: https://doi.org/10.1074/jbc.M302646200
67. Gooptu B, Lomas DA. Conformational pathology of the serpins - themes, variations and therapeutic strategies. Annu Rev Biochem. 2009;78:147-176. doi: https://doi.org/10.1146/annurev.biochem.78.082107.133320
68. Mallya M, Phillips RL, Saldanha SA, et al. Small molecules block the polymerisation of Z α1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem. 2007;50(22):5357-5363. doi: https://doi.org/10.1021/jm070687z
69. GlaxoSmithKline. Discovery partnerships with academia--Case studies: University College London collaboration aims to treat alpha-1 antitrypsin deficiency. GlaxoSmithKline website. http://www.dpac.gsk.com/case-studies-universitycollegelondon.html Accessed Janaury 2018.
70. Tan L, Perez J, Mela M, et al. Characterising the association of latency with α1-antitrypsin polymerisation using a novel monoclonal antibody. Int J Biochem Cell Biol. 2015;58:81-91. doi: https://doi.org/10.1016/j.biocel.2014.11.005
71. Ordonez A, Pérez J, Tan L, et al. A single-chain variable fragment intrabody prevents intracellular polymerisation of Z α1-antitrypsin. FASEB J. 2015;29:2667-26678. doi: https://doi.org/10.1096/fj.14-267351
72. Irving JA, Miranda E, Haq I, et al. An antibody raised against a pathogenic serpin variant induces mutant-like behaviour in the wild-type protein. Biochem J. 2015;468(1):99-108. doi: https://doi.org/10.1042/BJ20141569
73. Motamedi-Shad N, Jagger AM, Liedtke M, et al. An antibody that prevents serpin polymerisation acts by inducing a novel allosteric behaviour. Biochem J. 2016;473(19):3269-3290. doi: https://doi.org/10.1042/BCJ20160159
74. Ding J, Yannam GR, Roy-Chowdhury N, et al. Spontaneous hepatic repopulation in transgenic mice expressing mutant human α1-antitrypsin AAT by wild-type donor hepatocytes. J Clin Invest. 2011;121(5):1930-1934. doi: https://doi.org/10.1172/JCI45260
75. Rashid ST, Corbineau S, Hannan N, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120(9):3127-3136. doi: https://doi.org/10.1172/JCI43122
76. Wilson AA, Yin L, Liesa M, et al. Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Reports. 2015;4(5):873-885. doi: https://doi.org/10.1016/j.stemcr.2015.02.021
77. Yusa K, Rashid ST, Strick-Marchand H, et al. Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 2011;478:391-394. doi: https://doi.org/10.1038/nature10424
78. Baligar P, Kochat V, Arindkar SK, et al. Bone marrow stem cell therapy partially ameliorates pathological consequences in livers of mice expressing mutant human α1-antitrypsin. Hepatology. 2017;65(4):1319-1335. doi: https://doi.org/10.1002/hep.29027