1. Elbatreek MH, Pachado MP, Cuadrado A, Jandeleit-Dahm K, Schmidt H. Reactive oxygen comes of age: mechanism-based therapy of diabetic end-organ damage. Trends Endocrinol Metab. 2019;30(5):312-327. doi: https://doi.org/10.1016/j.tem.2019.02.006
2. Di Meo S, Reed TT, Venditti P, Victor VM. Role of ROS and RNS sources in physiological and pathological conditions. Oxid Med Cell Longev. 2016;1245049. doi: https://doi.org/10.1155/2016/1245049
3. Fritz R, Bol J, Hebling U, et al. Compartment-dependent management of H(2)O(2) by peroxisomes. Free Radic Biol Med. 2007;42(7):1119-1129. doi: https://doi.org/10.1016/j.freeradbiomed.2007.01.014
4. Hall S, McDermott C, Anoopkumar-Dukie S, et al. Cellular effects of pyocyanin, a secreted virulence factor of pseudomonas aeruginosa. Toxins (Basel). 2016;8(8). doi: https://doi.org/10.3390/toxins8080236
5. Yang Y, Bazhin AV, Werner J, Karakhanova S. Reactive oxygen species in the immune system. Int Rev Immunol. 2013;32(3):249-270. doi: https://doi.org/10.3109/08830185.2012.755176
6. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197-223. doi: https://doi.org/10.1146/annurev.immunol.23.021704.115653
7. Shadyro O, Samovich S, Edimecheva I. Free-radical and biochemical reactions involving polar part of glycerophospholipids. Free Radic Biol Med. 2019;144:6-15. doi: https://doi.org/10.1016/j.freeradbiomed.2019.02.033
8. Ahsan H, Ali A, Ali R. Oxygen free radicals and systemic autoimmunity. Clin Exp Immunol. 2003;131(3):398-404. doi: https://doi.org/10.1046/j.1365-2249.2003.02104.x
9. Pantopoulos K, Weiss G, Hentze MW. Nitric oxide and the post-transcriptional control of cellular iron traffic. Trends Cell Biol. 1994;4(3):82-86. doi: https://doi.org/10.1016/0962-8924(94)90179-1
10. Atkinson RW, Butland BK, Anderson HR, Maynard RL. Long-term concentrations of nitrogen dioxide and mortality: a meta-analysis of cohort studies. Epidemiology. 2018;29(4):460-472. doi: https://doi.org/10.1097/EDE.0000000000000847
11. Drew B, Leeuwenburgh C. Aging and the role of reactive nitrogen species. Ann N Y Acad Sci. 2002;959(1):66-81. doi: https://doi.org/10.1111/j.1749-6632.2002.tb02084.x
12. Pryor WA, Stone K. Oxidants in cigarette smoke. Radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci. 1993;686(1):12-27. doi: https://doi.org/10.1111/j.1749-6632.1993.tb39148.x
13. Lin JL, Thomas PS. Current perspectives of oxidative stress and its measurement in chronic obstructive pulmonary disease. COPD. 2010;7(4):291-306. doi: https://doi.org/10.3109/15412555.2010.496818
14. Rahman I, Adcock IM. Oxidative stress and redox regulation of lung inflammation in COPD. Eur Respir J. 2006;28(1):219-242. doi: https://doi.org/10.1183/09031936.06.00053805
15. Repine JE, Bast A, Lankhorst I. Oxidative stress in chronic obstructive pulmonary disease. Oxidative Stress Study Group. Am J Respir Crit Care Med. 1997;156(2 Pt 1):341-357. doi: https://doi.org/10.1164/ajrccm.156.2.9611013
16. Marginean C, Popescu MS, Vladaia M, Tudorascu D, Pirvu DC, Petrescu F. Involvement of oxidative stress in COPD. Curr Health Sci J. 2018;44(1):48-55. doi: https://doi.org/10.12865/CHSJ.44.01.08
17. McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med. 2017;6(2). doi: https://doi.org/10.3390/jcm6020021
18. Wiegman CH, Michaeloudes C, Haji G, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2015;136(3):769-780. doi: https://doi.org/10.1016/j.jaci.2015.01.046
19. Belchamber KBR, Singh R, Wedzicha JA, Barnes PJ, Donnelly LE. Elevated mitochondrial reactive oxygen species in COPD macrophages at exacerbation and with bacterial phagocytosis. Eur Respir J. 2015;46(59) doi: https://doi.org/10.1183/13993003.congress-2015.PA387
20. Hoffmann RF, Zarrintan S, Brandenburg SM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res. 2013;14:97. doi: https://doi.org/10.1186/1465-9921-14-97
21. Loukides S, Bakakos P, Kostikas K. Oxidative stress in patients with COPD. Curr Drug Targets. 2011;12(4):469-477. doi: https://doi.org/10.2174/138945011794751573
22. Neeraj, Pramod J, Singh S, Singh J. Antioxidants to the rescue of cell under invasion of free radicals-a review. Int J Basic Appl Med Sci. 2013;3:190-200. doi: http://www.cibtech.org/jms.htm
23. Liguori I, Russo G, Curcio F, et al. Oxidative stress, aging, and diseases. Clin Interv Aging. 2018;13:757-772. doi: https://doi.org/10.2147/CIA.S158513
24. De la Fuente M, Miquel J. An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des. 2009;15(26):3003-3026. doi: https://doi.org/10.2174/138161209789058110
25. Manach C, Morand C, Crespy V, et al. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 1998;426(3):331-336. doi: https://doi.org/10.1016/S0014-5793(98)00367-6
26. Upston JM, Witting PK, Brown AJ, Stocker R, Keaney JF, Jr. Effect of vitamin E on aortic lipid oxidation and intimal proliferation after arterial injury in cholesterol-fed rabbits. Free Radic Biol Med. 2001;31(10):1245-1253. doi: https://doi.org/10.1016/S0891-5849(01)00721-3
27. Northrop-Clewes CA, Thurnham DI. Monitoring micronutrients in cigarette smokers. Clin Chim Acta. 2007;377(1-2):14-38. doi: https://doi.org/10.1016/j.cca.2006.08.028
28. Beatty S, Koh H, Phil M, Henson D, Boulton M. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45(2):115-134. doi: https://doi.org/10.1016/S0039-6257(00)00140-5
29. Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci. 1992;669(1):7-20. doi: https://doi.org/10.1111/j.1749-6632.1992.tb17085.x
30. Koike K, Ishigami A, Sato Y, et al. Vitamin C prevents cigarette smoke-induced pulmonary emphysema in mice and provides pulmonary restoration. Am J Respir Cell Mol Biol. 2014;50(2):347-357. doi: https://doi.org/10.1165/rcmb.2013-0121OC
31. Gonzalez de Vega R, Fernandez-Sanchez ML, Fernandez JC, Alvarez Menendez FV, Sanz-Medel A. Selenium levels and glutathione peroxidase activity in the plasma of patients with type II diabetes mellitus. J Trace Elem Med Biol. 2016;37:44-49. doi: https://doi.org/10.1016/j.jtemb.2016.06.007
32. Alehagen U, Johansson P, Bjornstedt M, Rosen A, Post C, Aaseth J. Relatively high mortality risk in elderly Swedish subjects with low selenium status. Eur J Clin Nutr. 2016;70(1):91-96. doi: https://doi.org/10.1038/ejcn.2015.92
33. Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. Zinc and human health: an update. Arch Toxicol. 2012;86(4):521-534. doi: https://doi.org/10.1007/s00204-011-0775-1
34. Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: links and interactions. Oxid Med Cell Longev. 2018;7580707. doi: https://doi.org/10.1155/2018/7580707
35. Aguirre JD, Culotta VC. Battles with iron: manganese in oxidative stress protection. J Biol Chem. 2012;287(17):13541-13548. doi: https://doi.org/10.1074/jbc.R111.312181
36. Kehl-Fie TE, Skaar EP. Nutritional immunity beyond iron: a role for manganese and zinc. Curr Opin Chem Biol. 2010;14(2):218-224. doi: https://doi.org/10.1016/j.cbpa.2009.11.008
37. Grievink L, Smit HA, Ocke MC, van 't Veer P, Kromhout D. Dietary intake of antioxidant (pro)-vitamins, respiratory symptoms and pulmonary function: the MORGEN study. Thorax. 1998;53(3):166-171. doi: https://doi.org/10.1136/thx.53.3.166
38. McKeever TM, Scrivener S, Broadfield E, Jones Z, Britton J, Lewis SA. Prospective study of diet and decline in lung function in a general population. Am J Respir Crit Care Med. 2002;165(9):1299-1303. doi: https://doi.org/10.1164/rccm.2109030
39. Keranis E, Makris D, Rodopoulou P, et al. Impact of dietary shift to higher-antioxidant foods in COPD: a randomised trial. Eur Respir J. 2010;36(4):774-780. doi: https://doi.org/10.1183/09031936.00113809
40. Garcia-Larsen V, Potts JF, Omenaas E, et al. Dietary antioxidants and 10-year lung function decline in adults from the ECRHS survey. Eur Respir J. 2017;50(6). doi: https://doi.org/10.1183/13993003.02286-2016
41. Agarwal S, Rao AV. Tomato lycopene and its role in human health and chronic diseases. CMAJ. 2000;163(6):739-744.
42. Ares AM, Nozal MJ, Bernal J. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds. J Chromatogr A. 2013;1313:78-95. doi: https://doi.org/10.1016/j.chroma.2013.07.051
43. Riedl MA, Saxon A, Diaz-Sanchez D. Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clin Immunol. 2009;130(3):244-251. doi: https://doi.org/10.1016/j.clim.2008.10.007
44. Goven D, Boutten A, Lecon-Malas V, et al. Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax. 2008;63(10):916-924. doi: https://doi.org/10.1136/thx.2007.091181
45. Suzuki M, Betsuyaku T, Ito Y, et al. Down-regulated NF-E2-related factor 2 in pulmonary macrophages of aged smokers and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2008;39(6):673-682. doi: https://doi.org/10.1165/rcmb.2007-0424OC
46. Harvey CJ, Thimmulappa RK, Sethi S, et al. Targeting Nrf2 signaling improves bacterial clearance by alveolar macrophages in patients with COPD and in a mouse model. Sci Transl Med. 2011;3(78):78ra32. doi: https://doi.org/10.1126/scitranslmed.3002042
47. Wise RA, Holbrook JT, Criner G, et al. Lack of effect of oral sulforaphane administration on nrf2 expression in COPD: a randomized, double-blind, placebo-controlled trial. PLoS One. 2016;11(11):e0163716. doi: https://doi.org/10.1371/journal.pone.0163716
48. Lv H, Liu Q, Wen Z, Feng H, Deng X, Ci X. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3beta-Nrf2 signal axis. Redox Biol. 2017;12:311-324. doi: https://doi.org/10.1016/j.redox.2017.03.001
49. Omenn GS, Goodman GE, Thornquist MD, et al. Risk factors for lung cancer and for intervention effects in CARET, the Beta-Carotene and Retinol Efficacy Trial. J Natl Cancer Inst. 1996;88(21):1550-1559. doi: https://doi.org/10.1093/jnci/88.21.1550
50. Hong JY, Lee CY, Lee MG, Kim YS. Effects of dietary antioxidant vitamins on lung functions according to gender and smoking status in Korea: a population-based cross-sectional study. BMJ Open. 2018;8(4):e020656. doi: https://doi.org/10.1136/bmjopen-2017-020656
51. Berger MM. Can oxidative damage be treated nutritionally? Clin Nutr. 2005;24(2):172-183. doi: https://doi.org/10.1016/j.clnu.2004.10.003
52. Berthon BS, Wood LG. Nutrition and respiratory health--feature review. Nutrients. 2015;7(3):1618-1643. doi: https://doi.org/10.3390/nu7031618
53. El-Attar M, Said M, El-Assal G, Sabry NA, Omar E, Ashour L. Serum trace element levels in COPD patient: the relation between trace element supplementation and period of mechanical ventilation in a randomized controlled trial. Respirology. 2009;14(8):1180-1187. doi: https://doi.org/10.1111/j.1440-1843.2009.01622.x
54. Hirayama F, Lee AH, Oura A, Mori M, Hiramatsu N, Taniguchi H. Dietary intake of six minerals in relation to the risk of chronic obstructive pulmonary disease. Asia Pac J Clin Nutr. 2010;19(4):572-577.
55. Isbaniah F, Wiyono WH, Yunus F, Setiawati A, Totzke U, Verbruggen MA. Echinacea purpurea along with zinc, selenium and vitamin C to alleviate exacerbations of chronic obstructive pulmonary disease: results from a randomized controlled trial. J Clin Pharm Ther. 2011;36(5):568-576. doi: https://doi.org/10.1111/j.1365-2710.2010.01212.x
56. Hu G, Cassano PA. Antioxidant nutrients and pulmonary function: the Third National Health and Nutrition Examination Survey (NHANES III). Am J Epidemiol. 2000;151(10):975-981. doi: https://doi.org/10.1093/oxfordjournals.aje.a010141
57. Kutter D, Devaquet P, Vanderstocken G, Paulus JM, Marchal V, Gothot A. Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit? Acta Haematol. 2000;104(1):10-15. doi: https://doi.org/10.1159/000041062
58. Khan AA, Alsahli MA, Rahmani AH. Myeloperoxidase as an active disease biomarker: recent biochemical and pathological perspectives. Med Sci (Basel). 2018;6(2). doi: https://doi.org/10.3390/medsci6020033
59. Naegelen I, Beaume N, Plancon S, Schenten V, Tschirhart EJ, Brechard S. Regulation of neutrophil degranulation and cytokine secretion: a novel model approach based on linear fitting. J Immunol Res. 2015;2015:817038. doi: https://doi.org/10.1155/2015/817038
60. Keatings VM, Barnes PJ. Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med. 1997;155(2):449-453. doi: https://doi.org/10.1164/ajrccm.155.2.9032177
61. Pesci A, Balbi B, Majori M, et al. Inflammatory cells and mediators in bronchial lavage of patients with chronic obstructive pulmonary disease. Eur Respir J. 1998;12(2):380-386. doi: https://doi.org/10.1183/09031936.98.12020380
62. Fiorini G, Crespi S, Rinaldi M, Oberti E, Vigorelli R, Palmieri G. Serum ECP and MPO are increased during exacerbations of chronic bronchitis with airway obstruction. Biomed Pharmacother. 2000;54(5):274-278. doi: https://doi.org/10.1016/S0753-3322(00)80071-2
63. Crooks SW, Bayley DL, Hill SL, Stockley RA. Bronchial inflammation in acute bacterial exacerbations of chronic bronchitis: the role of leukotriene B4. Eur Respir J. 2000;15(2):274-280. doi: https://doi.org/10.1034/j.1399-3003.2000.15b09.x
64. Aaron SD, Angel JB, Lunau M, et al. Granulocyte inflammatory markers and airway infection during acute exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(2):349-355. doi: https://doi.org/10.1164/ajrccm.163.2.2003122
65. Churg A, Marshall CV, Sin DD, et al. Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2012;185(1):34-43. doi: https://doi.org/10.1164/rccm.201103-0468OC
66. Wang Y, Branicky R, Noe A, Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217(6):1915-1928. doi: https://doi.org/10.1083/jcb.201708007
67. Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003;167(12):1600-1619. doi: https://doi.org/10.1164/rccm.200212-1479SO
68. Comhair SA, Xu W, Ghosh S, et al. Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity. Am J Pathol. 2005;166(3):663-674. doi: https://doi.org/10.1016/S0002-9440(10)62288-2
69. Arcaroli JJ, Hokanson JE, Abraham E, et al. Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med. 2009;179(2):105-112. doi: https://doi.org/10.1164/rccm.200710-1566OC
70. Gao F, Koenitzer JR, Tobolewski JM, et al. Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J Biol Chem. 2008;283(10):6058-6066. doi: https://doi.org/10.1074/jbc.M709273200
71. Yao H, Arunachalam G, Hwang JW, et al. Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A. 2010;107(35):15571-15576. doi: https://doi.org/10.1073/pnas.1007625107
72. Break TJ, Witter AR, Indramohan M, Mummert ME, Dory L, Berg RE. Extracellular superoxide dismutase enhances recruitment of immature neutrophils to the liver. Infect Immun. 2016;84(12):3302-3312. doi: https://doi.org/10.1128/IAI.00603-16
73. Alonso MR, Anesini C. Clinical evidence of increase in hair growth and decrease in hair loss without adverse reactions promoted by the commercial lotion ECOHAIR(R). Skin Pharmacol Physiol. 2017;30(1):46-54. doi: https://doi.org/10.1159/000455958
74. Heck DE, Shakarjian M, Kim HD, Laskin JD, Vetrano AM. Mechanisms of oxidant generation by catalase. Ann N Y Acad Sci. 2010;1203(1):120-125. doi: https://doi.org/10.1111/j.1749-6632.2010.05603.x
75. Godic A, Poljsak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev. 2014;860479. doi: https://doi.org/10.1155/2014/860479
76. Kaarteenaho-Wiik R, Kinnula VL. Distribution of antioxidant enzymes in developing human lung, respiratory distress syndrome, and bronchopulmonary dysplasia. J Histochem Cytochem. 2004;52(9):1231-1240. doi: https://doi.org/10.1369/jhc.4A6291.2004
77. Ghosh S, Janocha AJ, Aronica MA, et al. Nitrotyrosine proteome survey in asthma identifies oxidative mechanism of catalase inactivation. J Immunol. 2006;176(9):5587-5597. doi: https://doi.org/10.4049/jimmunol.176.9.5587
78. Betsuyaku T, Fuke S, Inomata T, et al. Bronchiolar epithelial catalase is diminished in smokers with mild COPD. Eur Respir J. 2013;42(1):42-53. doi: https://doi.org/10.1183/09031936.00058912
79. Zmijewski JW, Lorne E, Zhao X, et al. Antiinflammatory effects of hydrogen peroxide in neutrophil activation and acute lung injury. Am J Respir Crit Care Med. 2009;179(8):694-704. doi: https://doi.org/10.1164/rccm.200806-851OC
80. Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS. Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Antioxid Redox Signal. 2005;7(5-6):619-626. doi: https://doi.org/10.1089/ars.2005.7.619
81. Ho YS, Magnenat JL, Bronson RT, et al. Mice deficient in cellular glutathione peroxidase develop normally and show no increased sensitivity to hyperoxia. J Biol Chem. 1997;272(26):16644-16651. doi: https://doi.org/10.1074/jbc.272.26.16644
82. Duong C, Seow HJ, Bozinovski S, Crack PJ, Anderson GP, Vlahos R. Glutathione peroxidase-1 protects against cigarette smoke-induced lung inflammation in mice. Am J Physiol Lung Cell Mol Physiol. 2010;299(3):L425-433. doi: https://doi.org/10.1152/ajplung.00038.2010
83. Yatmaz S, Seow HJ, Gualano RC, et al. Glutathione peroxidase-1 reduces influenza A virus-induced lung inflammation. Am J Respir Cell Mol Biol. 2013;48(1):17-26. doi: https://doi.org/10.1165/rcmb.2011-0345OC
84. Bozinovski S, Seow HJ, Crack PJ, Anderson GP, Vlahos R. Glutathione peroxidase-1 primes pro-inflammatory cytokine production after LPS challenge in vivo. PLoS One. 2012;7(3):e33172. doi: https://doi.org/10.1371/journal.pone.0033172
85. Won HY, Sohn JH, Min HJ, et al. Glutathione peroxidase 1 deficiency attenuates allergen-induced airway inflammation by suppressing Th2 and Th17 cell development. Antioxid Redox Signal. 2010;13(5):575-587. doi: https://doi.org/10.1089/ars.2009.2989
86. Dittrich AM, Meyer HA, Krokowski M, et al. Glutathione peroxidase-2 protects from allergen-induced airway inflammation in mice. Eur Respir J. 2010;35(5):1148-1154. doi: https://doi.org/10.1183/09031936.00026108
87. Singh A, Rangasamy T, Thimmulappa RK, et al. Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol. 2006;35(6):639-650. doi: https://doi.org/10.1165/rcmb.2005-0325OC
88. Avissar N, Finkelstein JN, Horowitz S, et al. Extracellular glutathione peroxidase in human lung epithelial lining fluid and in lung cells. Am J Physiol. 1996;270(2 Pt 1):L173-182. doi: https://doi.org/10.1152/ajplung.1996.270.2.L173
89. Comhair SA, Erzurum SC. The regulation and role of extracellular glutathione peroxidase. Antioxid Redox Signal. 2005;7(1-2):72-79. doi: https://doi.org/10.1089/ars.2005.7.72
90. Schneider M, Forster H, Boersma A, et al. Mitochondrial glutathione peroxidase 4 disruption causes male infertility. FASEB J. 2009;23(9):3233-3242. doi: https://doi.org/10.1096/fj.09-132795
91. Yant LJ, Ran Q, Rao L, et al. The selenoprotein GPX4 is essential for mouse development and protects from radiation and oxidative damage insults. Free Radic Biol Med. 2003;34(4):496-502. doi: https://doi.org/10.1016/S0891-5849(02)01360-6
92. Vibhuti A, Arif E, Deepak D, Singh B, Qadar Pasha MA. Correlation of oxidative status with BMI and lung function in COPD. Clin Biochem. 2007;40(13-14):958-963. doi: https://doi.org/10.1016/j.clinbiochem.2007.04.020
93. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194(1):7-15. doi: https://doi.org/10.1083/jcb.201102095
94. Patel P, Chatterjee S. Peroxiredoxin6 in endothelial signaling. Antioxidants (Basel). 2019;8(3). doi: https://doi.org/10.3390/antiox8030063
95. Elko EA, Cunniff B, Seward DJ, et al. Peroxiredoxins and beyond; redox systems regulating lung physiology and disease. Antioxid Redox Signal. 2019. doi: https://doi.org/10.1089/ars.2019.7752
96. Mironczuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018;63(1):68-78. doi: https://doi.org/10.1016/j.advms.2017.05.005
97. Dubick MA, Barr JL, Keen CL, Atkins JL. Ceruloplasmin and hypoferremia: studies in burn and non-burn trauma patients. Antioxidants (Basel). 2015;4(1):153-169. doi: https://doi.org/10.3390/antiox4010153
98. Chapman AL, Mocatta TJ, Shiva S, et al. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem. 2013;288(9):6465-6477. doi: https://doi.org/10.1074/jbc.M112.418970
99. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6(6):593-597. doi: https://doi.org/10.1016/0891-5849(89)90066-X
100. Moldeus P, Cotgreave IA, Berggren M. Lung protection by a thiol-containing antioxidant: N-acetylcysteine. Respiration. 1986;50(Suppl 1):31-42. doi: https://doi.org/10.1159/000195086
101. Sanguinetti CM. N-acetylcysteine in COPD: why, how, and when? Multidiscip Respir Med. 2015;11:8. doi: https://doi.org/10.1186/s40248-016-0039-2
102. Dekhuijzen PN, van Beurden WJ. The role for N-acetylcysteine in the management of COPD. Int J Chron Obstruct Pulmon Dis. 2006;1(2):99-106. doi: https://doi.org/10.2147/copd.2006.1.2.99
103. Pela R, Calcagni AM, Subiaco S, Isidori P, Tubaldi A, Sanguinetti CM. N-acetylcysteine reduces the exacerbation rate in patients with moderate to severe COPD. Respiration. 1999;66(6):495-500. doi: https://doi.org/10.1159/000029447
104. Zheng JP, Wen FQ, Bai CX, et al. Twice daily N-acetylcysteine 600 mg for exacerbations of chronic obstructive pulmonary disease (PANTHEON): a randomised, double-blind placebo-controlled trial. Lancet Respir Med. 2014;2(3):187-194. doi: https://doi.org/10.1016/S2213-2600(13)70286-8
105. Fowdar K, Chen H, He Z, et al. The effect of N-acetylcysteine on exacerbations of chronic obstructive pulmonary disease: A meta-analysis and systematic review. Heart Lung. 2017;46(2):120-128. doi: https://doi.org/10.1016/j.hrtlng.2016.12.004
106. Cazzola M, Matera MG. N-acetylcysteine in COPD may be beneficial, but for whom? Lancet Respir Med. 2014;2(3):166-167. doi: https://doi.org/10.1016/S2213-2600(13)70294-7
107. Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992;257(5076):1496-1502. doi: https://doi.org/10.1126/science.1523409
108. Mullineaux PM, Rausch T. Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res. 2005;86(3):459-474. doi: https://doi.org/10.1007/s11120-005-8811-8
109. Moinova HR, Mulcahy RT. Up-regulation of the human gamma-glutamylcysteine synthetase regulatory subunit gene involves binding of Nrf-2 to an electrophile responsive element. Biochem Biophys Res Commun. 1999;261(3):661-668. doi: https://doi.org/10.1006/bbrc.1999.1109
110. Wild AC, Moinova HR, Mulcahy RT. Regulation of gamma-glutamylcysteine synthetase subunit gene expression by the transcription factor Nrf2. J Biol Chem. 1999;274(47):33627-33636. doi: https://doi.org/10.1074/jbc.274.47.33627
111. Chanas SA, Jiang Q, McMahon M, et al. Loss of the Nrf2 transcription factor causes a marked reduction in constitutive and inducible expression of the glutathione S-transferase Gsta1, Gsta2, Gstm1, Gstm2, Gstm3 and Gstm4 genes in the livers of male and female mice. Biochem J. 2002;365(Pt 2):405-416. doi: https://doi.org/10.1042/bj20020320
112. Lillig CH, Berndt C, Vergnolle O, et al. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci U S A. 2005;102(23):8168-8173. doi: https://doi.org/10.1073/pnas.0500735102
113. Aquilano K, Baldelli S, Ciriolo MR. Glutathione: new roles in redox signaling for an old antioxidant. Front Pharmacol. 2014;5:196. doi: https://doi.org/10.3389/fphar.2014.00196
114. Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727-1745. doi: https://doi.org/10.1089/ars.2017.7342
115. Ghezzi P. Role of glutathione in immunity and inflammation in the lung. Int J Gen Med. 2011;4:105-113. doi: https://doi.org/10.2147/IJGM.S15618
116. Gould NS, Day BJ. Targeting maladaptive glutathione responses in lung disease. Biochem Pharmacol. 2011;81(2):187-193. doi: https://doi.org/10.1016/j.bcp.2010.10.001
117. Borok Z, Buhl R, Grimes GJ, et al. Effect of glutathione aerosol on oxidant-antioxidant imbalance in idiopathic pulmonary fibrosis. Lancet. 1991;338(8761):215-216. doi: https://doi.org/10.1016/0140-6736(91)90350-X
118. Marrades RM, Roca J, Barbera JA, de Jover L, MacNee W, Rodriguez-Roisin R. Nebulized glutathione induces bronchoconstriction in patients with mild asthma. Am J Respir Crit Care Med. 1997;156(2 Pt 1):425-430. doi: https://doi.org/10.1164/ajrccm.156.2.9611001
119. Prousky J. The treatment of pulmonary diseases and respiratory-related conditions with inhaled (nebulized or aerosolized) glutathione. Evid Based Complement Alternat Med. 2008;5(1):27-35. doi: https://doi.org/10.1093/ecam/nem040
120. Lopez-Lluch G, Rodriguez-Aguilera JC, Santos-Ocana C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev. 2010;131(4):225-235. doi: https://doi.org/10.1016/j.mad.2010.02.003
121. Battino M, Gorini A, Villa RF, et al. Coenzyme Q content in synaptic and non-synaptic mitochondria from different brain regions in the ageing rat. Mech Ageing Dev. 1995;78(3):173-187. doi: https://doi.org/10.1016/0047-6374(94)01535-T
122. Beyer RE, Burnett BA, Cartwright KJ, et al. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech Ageing Dev. 1985;32(2-3):267-281. doi: https://doi.org/10.1016/0047-6374(85)90085-5
123. Kalen A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24(7):579-584. doi: https://doi.org/10.1007/BF02535072
124. Turunen M, Appelkvist EL, Sindelar P, Dallner G. Blood concentration of coenzyme Q(10) increases in rats when esterified forms are administered. J Nutr. 1999;129(12):2113-2118.
125. De Benedetto F, Pastorelli R, Ferrario M, et al. Supplementation with Qter and creatine improves functional performance in COPD patients on long term oxygen therapy. Respir Med. 2018;142:86-93. doi: https://doi.org/10.1016/j.rmed.2018.08.002
126. Fan L, Feng Y, Chen GC, Qin LQ, Fu CL, Chen LH. Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2017;119:128-136. doi: https://doi.org/10.1016/j.phrs.2017.01.032
127. Hernandez-Camacho JD, Bernier M, Lopez-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44. doi: https://doi.org/10.3389/fphys.2018.00044
128. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc Natl Acad Sci U S A. 1981;78(11):6858-6862. doi: https://doi.org/10.1073/pnas.78.11.6858
129. Fabbrini E, Serafini M, Colic Baric I, Hazen SL, Klein S. Effect of plasma uric acid on antioxidant capacity, oxidative stress, and insulin sensitivity in obese subjects. Diabetes. 2014;63(3):976-981. doi: https://doi.org/10.2337/db13-1396
130. Klein BE, Klein R, Lee KE. Components of the metabolic syndrome and risk of cardiovascular disease and diabetes in Beaver Dam. Diabetes Care. 2002;25(10):1790-1794. doi: https://doi.org/10.2337/diacare.25.10.1790
131. Bartziokas K, Papaioannou AI, Loukides S, et al. Serum uric acid as a predictor of mortality and future exacerbations of COPD. Eur Respir J. 2014;43(1):43-53. doi: https://doi.org/10.1183/09031936.00209212
132. Kahnert K, Alter P, Welte T, et al. Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: a multi-dimensional approach. Respir Res. 2018;19(1):110. doi: https://doi.org/10.1186/s12931-018-0815-y
133. Pandi-Perumal SR, Trakht I, Srinivasan V, et al. Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol. 2008;85(3):335-353. doi: https://doi.org/10.1016/j.pneurobio.2008.04.001
134. Hardeland R, Pandi-Perumal SR. Melatonin, a potent agent in antioxidative defense: actions as a natural food constituent, gastrointestinal factor, drug and prodrug. Nutr Metab (Lond). 2005;2:22. doi: https://doi.org/10.1186/1743-7075-2-22
135. Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR. Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept. 2000;9(3-4):137-159. doi: https://doi.org/10.1159/000014635
136. Torres F, Gonzalez-Candia A, Montt C, et al. Melatonin reduces oxidative stress and improves vascular function in pulmonary hypertensive newborn sheep. J Pineal Res. 2015;58(3):362-373. doi: https://doi.org/10.1111/jpi.12222
137. Tsai SC. Chronic obstructive pulmonary disease and sleep related disorders. Curr Opin Pulm Med. 2017;23(2):124-128. doi: https://doi.org/10.1097/MCP.0000000000000351
138. Kelly FJ, Mudway IS. Protein oxidation at the air-lung interface. Amino Acids. 2003;25(3-4):375-396. doi: https://doi.org/10.1007/s00726-003-0024-x
139. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012;5(1):9-19. doi: https://doi.org/10.1097/WOX.0b013e3182439613
140. Medina-Navarro R, Duran-Reyes G, Diaz-Flores M, Vilar-Rojas C. Protein antioxidant response to the stress and the relationship between molecular structure and antioxidant function. PLoS One. 2010;5(1):e8971. doi: https://doi.org/10.1371/journal.pone.0008971
141. Wayner DD, Burton GW, Ingold KU, Locke S. Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett. 1985;187(1):33-37. doi: https://doi.org/10.1016/0014-5793(85)81208-4
142. Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211-1219. doi: https://doi.org/10.1002/hep.20720
143. Otagiri M, Chuang VT. Pharmaceutically important pre- and posttranslational modifications on human serum albumin. Biol Pharm Bull. 2009;32(4):527-534. doi: https://doi.org/10.1248/bpb.32.527
144. Taverna M, Marie AL, Mira JP, Guidet B. Specific antioxidant properties of human serum albumin. Ann Intensive Care. 2013;3(1):4. doi: https://doi.org/10.1186/2110-5820-3-4
145. Colombo G, Clerici M, Giustarini D, Rossi R, Milzani A, Dalle-Donne I. Redox albuminomics: oxidized albumin in human diseases. Antioxid Redox Signal. 2012;17(11):1515-1527. doi: https://doi.org/10.1089/ars.2012.4702
146. Turell L, Botti H, Carballal S, et al. Reactivity of sulfenic acid in human serum albumin. Biochemistry. 2008;47(1):358-367. doi: https://doi.org/10.1021/bi701520y
147. McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med. 2017;6(2):21. doi: https://doi.org/10.3390/jcm6020021
148. Johnson D, Travis J. The oxidative inactivation of human alpha-1 proteinase inhibitor. Further evidence for methionine at the reactive center. J Biol Chem. 1979;254(10):4022-4026. doi: https://www.ncbi.nlm.nih.gov/pubmed/312289
149. Levine RL, Mosoni L, Berlett BS, Stadtman ER. Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A. 1996;93(26):15036-15040. doi: https://doi.org/10.1073/pnas.93.26.15036
150. Stockley RA. Alpha-1antitrypsin: a polyfunctional protein? Lancet Respir Med. 2015;3(5):341-343. doi: https://doi.org/10.1016/S2213-2600(15)00094-6
151. Carp H, Miller F, Hoidal JR, Janoff A. Potential mechanism of emphysema: alpha-1 proteinase inhibitor recovered from lungs of cigarette smokers contains oxidized methionine and has decreased elastase inhibitory capacity. Proc Natl Acad Sci U S A. 1982;79(6):2041-2045. doi: https://doi.org/10.1073/pnas.79.6.2041
152. Taggart C, Cervantes-Laurean D, Kim G, et al. Oxidation of either methionine 351 or methionine 358 in alpha-1 antitrypsin causes loss of anti-neutrophil elastase activity. J Biol Chem. 2000;275(35):27258-27265. doi: https://doi.org/10.1074/jbc.M004850200
153. Moraga F, Janciauskiene S. Activation of primary human monocytes by the oxidized form of alpha-1 antitrypsin. J Biol Chem. 2000;275(11):7693-7700. doi: https://doi.org/10.1074/jbc.275.11.7693
154. Li Z, Alam S, Wang J, Sandstrom CS, Janciauskiene S, Mahadeva R. Oxidized alpha-1 antitrypsin stimulates the release of monocyte chemotactic protein-1 from lung epithelial cells: potential role in emphysema. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L388-400. doi: https://doi.org/10.1152/ajplung.90373.2008
155. Wright JL, Farmer SG, Churg A. A neutrophil elastase inhibitor reduces cigarette smoke-induced remodelling of lung vessels. Eur Respir J. 2003;22(1):77-81. doi: https://doi.org/10.1183/09031936.03.00095703
156. Subramaniyam D, Virtala R, Pawlowski K, et al. TNF-alpha-induced self-expression in human lung endothelial cells is inhibited by native and oxidized alpha1-antitrypsin. Int J Biochem Cell Biol. 2008;40(2):258-271. doi: https://doi.org/10.1016/j.biocel.2007.07.016
157. Jedicke N, Struever N, Aggrawal N, et al. Alpha-1 antitrypsin inhibits acute liver failure in mice. Hepatology. 2014;59(6):2299-2308. doi: https://doi.org/10.1002/hep.27024
158. Siebers K, Fink B, Zakrzewicz A, et al. Alpha-1 antitrypsin inhibits ATP-mediated release of interleukin-1beta via CD36 and nicotinic acetylcholine receptors. Front Immunol. 2018;9:877. doi: https://doi.org/10.3389/fimmu.2018.00877
159. Panyutich AV, Hiemstra PS, van Wetering S, Ganz T. Human neutrophil defensin and serpins form complexes and inactivate each other. Am J Respir Cell Mol Biol. 1995;12(3):351-357. doi: https://doi.org/10.1165/ajrcmb.12.3.7873202
160. Spencer LT, Paone G, Krein PM, Rouhani FN, Rivera-Nieves J, Brantly ML. Role of human neutrophil peptides in lung inflammation associated with alpha-1antitrypsin deficiency. Am J Physiol Lung Cell Mol Physiol. 2004;286(3):L514-520. doi: https://doi.org/10.1152/ajplung.00099.2003
161. Wencker M, Brantly ML. Cytotoxic concentrations of alpha-defensins in the lungs of individuals with alpha-1 antitrypsin deficiency and moderate to severe lung disease. Cytokine. 2005;32(1):1-6. doi: https://doi.org/10.1016/j.cyto.2005.06.003
162. Frenzel E, Wrenger S, Immenschuh S, et al. Acute-phase protein alpha-1 antitrypsin--a novel regulator of angiopoietin-like protein 4 transcription and secretion. J Immunol. 2014;192(11):5354-5362. doi: https://doi.org/10.4049/jimmunol.1400378
163. Karnaukhova E, Krupnikova SS, Rajabi M, Alayash AI. Heme binding to human alpha-1 proteinase inhibitor. Biochim Biophys Acta. 2012;1820(12):2020-2029. doi: https://doi.org/10.1016/j.bbagen.2012.09.012
164. Tiriveedhi V, Banan B, Deepti S, et al. Role of defensins in the pathogenesis of chronic lung allograft rejection. Hum Immunol. 2014;75(4):370-377. doi: https://doi.org/10.1016/j.humimm.2013.12.014
165. Miyamoto Y, Akaike T, Maeda H. S-nitrosylated human alpha (1)-protease inhibitor. Biochim Biophys Acta. 2000;1477(1-2):90-97. doi: https://doi.org/10.1016/S0167-4838(99)00264-2
166. Janciauskiene S, Welte T. Well-known and less well-known functions of alpha-1 antitrypsin. Its role in chronic obstructive pulmonary disease and other disease developments. Ann Am Thorac Soc. 2016;13(Suppl 4):S280-288. doi: https://doi.org/10.1513/AnnalsATS.201507-468KV
167. Kaner Z, Engelman R, Schuster R, et al. S-Nitrosylation of α1-antitrypsin triggers macrophages toward inflammatory phenotype and enhances intra-cellular bacteria elimination. Front Immunol. 2019;10(590). doi: https://doi.org/10.3389/fimmu.2019.00590
168. Janciauskiene S, Wrenger S, Immenschuh S, et al. The multifaceted effects of alpha-1 antitrypsin on neutrophil functions. Front Pharmacol. 2018;9:341. doi: https://doi.org/10.3389/fphar.2018.00341
169. Kuscuoglu D, Janciauskiene S, Hamesch K, Haybaeck J, Trautwein C, Strnad P. Liver - master and servant of serum proteome. J Hepatol. 2018;69(2):512-524. doi: https://doi.org/10.1016/j.jhep.2018.04.018
170. Marcus NY, Blomenkamp K, Ahmad M, Teckman JH. Oxidative stress contributes to liver damage in a murine model of alpha-1 antitrypsin deficiency. Exp Biol Med (Maywood). 2012;237(10):1163-1172. doi: https://doi.org/10.1258/ebm.2012.012106
171. Kelly E, Greene CM, Carroll TP, McElvaney NG, O'Neill SJ. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha-1antitrypsin deficiency. J Biol Chem. 2009;284(25):16891-16897. doi: https://doi.org/10.1074/jbc.M109.006288
172. Rudnick DA, Perlmutter DH. Alpha-1 antitrypsin deficiency: a new paradigm for hepatocellular carcinoma in genetic liver disease. Hepatology. 2005;42(3):514-521. doi: https://doi.org/10.1002/hep.20815
173. Sanchez-Valle V, Chavez-Tapia NC, Uribe M, Mendez-Sanchez N. Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem. 2012;19(28):4850-4860. doi: https://doi.org/10.2174/092986712803341520
174. Li S, Tan HY, Wang N, et al. The role of oxidative stress and antioxidants in liver diseases. Int J Mol Sci. 2015;16(11):26087-26124. doi: https://doi.org/10.3390/ijms161125942
175. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22(4):672-688. doi: https://doi.org/10.1183/09031936.03.00040703
176. Deslee G, Woods JC, Moore C, et al. Oxidative damage to nucleic acids in severe emphysema. Chest. 2009;135(4):965-974. doi: https://doi.org/10.1378/chest.08-2257
177. Owen CA. Proteinases and oxidants as targets in the treatment of chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(4):373-394; doi: https://doi.org/10.1513/pats.200504-029SR
178. Rahman I, Morrison D, Donaldson K, MacNee W. Systemic oxidative stress in asthma, COPD, and smokers. Am J Respir Crit Care Med. 1996;154(4 Pt 1):1055-1060. doi: https://doi.org/10.1164/ajrccm.154.4.8887607
179. Rahman I, Swarska E, Henry M, Stolk J, MacNee W. Is there any relationship between plasma antioxidant capacity and lung function in smokers and in patients with chronic obstructive pulmonary disease? Thorax. 2000;55(3):189-193. doi: https://doi.org/10.1136/thorax.55.3.189
180. van Antwerpen VL, Theron AJ, Richards GA, et al. Vitamin E, pulmonary functions, and phagocyte-mediated oxidative stress in smokers and nonsmokers. Free Radic Biol Med. 1995;18(5):935-941. doi: https://doi.org/10.1016/0891-5849(94)00225-9
181. Zinellu E, Zinellu A, Fois AG, Carru C, Pirina P. Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res. 2016;17(1):150. doi: https://doi.org/10.1186/s12931-016-0471-z
182. Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med. 1997;3(6):675-677. doi: https://doi.org/10.1038/nm0697-675
183. Mao JT, Goldin JG, Dermand J, et al. A pilot study of all-trans-retinoic acid for the treatment of human emphysema. Am J Respir Crit Care Med. 2002;165(5):718-723. doi: https://doi.org/10.1164/ajrccm.165.5.2106123
184. Konno K, Arai H, Motomiya M, et al. A biochemical study on glycosaminoglycans (mucopolysaccharides) in emphysematous and in aged lungs. Am Rev Respir Dis. 1982;126(5):797-801.
185. Cantor JO, Cerreta JM, Armand G, Turino GM. Aerosolized hyaluronic acid decreases alveolar injury induced by human neutrophil elastase. Proc Soc Exp Biol Med. 1998;217(4):471-475. doi: https://doi.org/10.3181/00379727-217-44260
186. Gocmen G, Gonul O, Oktay NS, Yarat A, Goker K. The antioxidant and anti-inflammatory efficiency of hyaluronic acid after third molar extraction. J Craniomaxillofac Surg. 2015;43(7):1033-1037. doi: https://doi.org/10.1016/j.jcms.2015.04.022
187. Turino GM, Ma S, Lin YY, Cantor JO. The therapeutic potential of hyaluronan in COPD. Chest. 2018;153(4):792-798. doi: https://doi.org/10.1016/j.chest.2017.12.016
188. Escribano A, Amor M, Pastor S, et al. Decreased glutathione and low catalase activity contribute to oxidative stress in children with alpha-1 antitrypsin deficiency. Thorax. 2015;70(1):82-83. doi: https://doi.org/10.1136/thoraxjnl-2014-205898
189. Sandhaus RA. Alpha-1 antitrypsin deficiency⸱6: new and emerging treatments for alpha-1 antitrypsin deficiency. Thorax. 2004;59(10):904-909. doi: https://doi.org/10.1136/thx.2003.006551