1. McElvaney NG. Diagnosing alpha-1 antitrypsin deficiency: how to improve the current algorithm. Eur Respir Rev. 2015;24(135):52-57. doi: https://doi.org/10.1183/09059180.10010814
2. Stoller JK, Brantly M. The challenge of detecting alpha-1 antitrypsin deficiency. COPD. 2013;10(Suppl 1):26-34. doi: https://doi.org/10.3109/15412555.2013.763782
3. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 Report: GOLD executive summary. Eur Respir J. 2017;49(3). doi: https://doi.org/10.1183/13993003.00214-2017
4. Darlington GJ, Astrin KH, Muirhead SP, Desnick RJ, Smith M. Assignment of human alpha- 1 antitrypsin to chromosome 14 by somatic cell hybrid analysis. Proc Natl Acad Sci U S A. 1982;79(3):870-873. doi: https://doi.org/10.1073/pnas.79.3.870
5. Cox DW, Markovic VD, Teshima IE. Genes for immunoglobulin heavy chains and for alpha-1 antitrypsin are localized to specific regions of chromosome 14q. Nature. 1982;297(5865):428-430. doi: https://doi.org/10.1038/297428a0
6. Huber R, Carrell RW. Implications of the three-dimensional structure of alpha-1 antitrypsin for structure and function of serpins. Biochemistry. 1989;28(23):8951-8966. doi: https://doi.org/10.1021/bi00449a001
7. Gadek JE, Fells GA, Zimmerman RL, Rennard SI, Crystal RG. Antielastases of the human alveolar structures. Implications for the protease-antiprotease theory of emphysema. J Clin Invest. 1981;68(4):889-898. doi: https://doi.org/10.1172/JCI110344
8. Wewers MD, Casolaro MA, Sellers SE, et al. Replacement therapy for alpha-1 antitrypsin deficiency associated with emphysema. N Engl J Med. 1987;316(17):1055-1062. doi: https://doi.org/10.1056/NEJM198704233161704
9. Churg A, Wang RD, Xie C, Wright JL. Alpha-1 antitrypsin ameliorates cigarette smoke-induced emphysema in the mouse. Am J Respir Crit Care Med. 2003;168(2):199-207. doi: https://doi.org/10.1164/rccm.200302-203OC
10. Ogushi F, Fells GA, Hubbard RC, Straus SD, Crystal RG. Z-type alpha-1 antitrypsin is less competent than M1-type alpha-1 antitrypsin as an inhibitor of neutrophil elastase. J Clin Invest. 1987;80(5):1366-1374. doi: https://doi.org/10.1172/JCI113214
11. Gadek JE, Fells GA, Crystal RG. Cigarette smoking induces functional antiprotease deficiency in the lower respiratory tract of humans. Science. 1979;206(4424):1315-1316. doi: https://doi.org/10.1126/science.316188
12. Chapman KR, Burdon JG, Piitulainen E, et al. Intravenous augmentation treatment and lung density in severe alpha-1 antitrypsin deficiency (RAPID): a randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9991):360-368. doi: https://doi.org/10.1016/S0140-6736(15)60860-1
13. McElvaney NG, Burdon J, Holmes M, et al. Long-term efficacy and safety of alpha-1 proteinase inhibitor treatment for emphysema caused by severe alpha-1 antitrypsin deficiency: an open-label extension trial (RAPID-OLE). Lancet Respir Med. 2017;5(1):51-60. doi: https://doi.org/10.1016/S2213-2600(16)30430-1
14. Bergin DA, Hurley K, McElvaney NG, Reeves EP. Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent. Arch Immunol Ther Exp (Warsz). 2012;60(2):81-97. doi: https://doi.org/10.1007/s00005-012-0162-5
15. Rouhani F, Paone G, Smith NK, Krein P, Barnes P, Brantly ML. Lung neutrophil burden correlates with increased pro-inflammatory cytokines and decreased lung function in individuals with alpha 1-antitrypsin deficiency. Chest. 2000;117(5 Suppl 1):250S-1S. doi https://doi.org/10.1378/chest.117.5_suppl_1.250S
16. Malerba M, Ricciardolo F, Radaeli A, et al. Neutrophilic inflammation and IL-8 levels in induced sputum of alpha-1-antitrypsin PiMZ subjects. Thorax. 2006;61(2):129-133. doi: https://doi.org/10.1136/thx.2005.043471
17. Hubbard RC, Fells G, Gadek J, Pacholok S, Humes J, Crystal RG. Neutrophil accumulation in the lung in alpha-1 antitrypsin deficiency. Spontaneous release of leukotriene B4 by alveolar macrophages. J Clin Invest. 1991;88(3):891-897. doi: https://doi.org/10.1172/JCI115391
18. McElvaney NG, Nakamura H, Birrer P, Hebert CA, et al. Modulation of airway inflammation in cystic fibrosis. In vivo suppression of interleukin-8 levels on the respiratory epithelial surface by aerosolization of recombinant secretory leukoprotease inhibitor. J Clin Invest. 1992;90(4):1296-1301. doi: https://doi.org/10.1172/JCI115994
19. Walsh DE, Greene CM, Carroll TP, et al. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium. J Biol Chem. 2001;276(38):35494-35499. doi: https://doi.org/10.1074/jbc.M103543200
20. Serezani CH, Lewis C, Jancar S, Peters-Golden M. Leukotriene B4 amplifies NF-kappaB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression. J Clin Invest. 2011;121(2):671-682. doi: https://doi.org/10.1172/JCI43302
21. Carroll TP, Greene CM, Taggart CC, Bowie AG, O'Neill SJ, McElvaney NG. Viral inhibition of IL-1- and neutrophil elastase-induced inflammatory responses in bronchial epithelial cells. J Immunol. 2005;175(11):7594-7601. doi: https://doi.org/10.4049/jimmunol.175.11.7594
22. Bergin DA, Greene CM, Sterchi EE, et al. Activation of EGFR by a novel metalloprotease pathway. J Biol Chem. 2008;283:31738-31744. doi: https://doi.org/10.1074/jbc.M803732200 .
23. Walsh DE, Greene CM, Carroll TP, et al. Interleukin-8 up-regulation by neutrophil elastase is mediated by MyD88/IRAK/TRAF-6 in human bronchial epithelium. J Biol Chem. 2001;276(38):35494-35499. doi: https://doi.org/10.1074/jbc.M103543200
24. Devaney JM, Greene CM, Taggart CC, Carroll TP, O'Neill SJ, McElvaney NG. Neutrophil elastase up-regulates interleukin-8 via toll-like receptor 4. FEBS Lett. 2003;544(1-3):129-132. doi: https://doi.org/10.1016/S0014-5793(03)00482-4
25. Carroll TP, Greene CM, Taggart CC, Bowie AG, O'Neill SJ, McElvaney NG. Viral inhibition of IL-1- and neutrophil elastase-induced inflammatory tesponses in bronchial epithelial cells. J Immunol. 2005;175(11):7594-7601. doi: https://doi.org/10.4049/jimmunol.175.11.7594
26. Yamaguchi R, Yamamoto T, Sakamoto A, et al. A protease-activated receptor 2 agonist (AC-264613) suppresses interferon regulatory factor 5 and decreases interleukin-12p40 production by lipopolysaccharide-stimulated macrophages: role of p53. Cell Biol Int. 2016;40(6):629-41. doi: https://doi.org/10.1002/cbin.10589
27. Benabid R, Wartelle J, Malleret L, Guyot N, Gangloff S, Lebargy F, et al. Neutrophil elastase modulates cytokine expression: contribution to host defense against pseudomonas aeruginosa-induced pneumonia. J Biol Chem. 2012;287(42):34883-34894. doi: https://doi.org/10.1074/jbc.M112.361352
28. Kuwahara I, Lillehoj EP, Lu W, et al. Neutrophil elastase induces IL-8 gene transcription and protein release through p38/NF-κB activation via EGFR transactivation in a lung epithelial cell line. Am J Physiol Lung Cell Mol Physiol. 2006;291(3):L407-L16. doi: https://doi.org/10.1152/ajplung.00471.2005
29. Towstyka NY, Shiromizu CM, Keitelman I, et al. Modulation of gammadelta T-cell activation by neutrophil elastase. Immunology. 2018;153(2):225-237. doi: https://doi.org/10.1111/imm.12835
30. Mydel P, Shipley JM, Adair-Kirk TL, et al. Neutrophil elastase cleaves laminin-332 (laminin-5) generating peptides that are chemotactic for neutrophils. J Biol Chem. 2008;283(15):9513-9522. doi: https://doi.org/10.1074/jbc.M706239200
31. Hunninghake GW, Davidson JM, Rennard S, Szapiel S, Gadek JE, Crystal RG. Elastin fragments attract macrophage precursors to diseased sites in pulmonary emphysema. Science. 1981;212(4497):925-927. doi: https://doi.org/10.1126/science.7233186
32. Vago JP, Tavares LP, Sugimoto MA, et al. proresolving actions of synthetic and natural protease inhibitors are mediated by annexin A1. J Immunology. 2016;196(4):1922-1932. doi: https://doi.org/10.4049/jimmunol.1500886
33. Borregaard N. Neutrophils from marrow to microbes. Immunity. 2010;33(5):657-670. doi: https://doi.org/10.1016/j.immuni.2010.11.011
34. McEver RP, Cummings RD. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest. 1997;100(11 Suppl):S97-103. doi: https://doi.org/10.1172/JCI119556
35. Kansas GS. Selectins and their ligands: current concepts and controversies. Blood. 1996;88(9):3259-3287. doi: https://doi.org/10.1182/blood.V88.9.3259.bloodjournal8893259
36. Massena S, Christoffersson G, Hjertstrom E, et al. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood. 2010;116(11):1924-1931. doi: https://doi.org/10.1182/blood-2010-01-266072
37. Summers C, Rankin SM, Condliffe AM, Singh N, Peters AM, Chilvers ER. Neutrophil kinetics in health and disease. Trends Immunol. 2010;31(8):318-324. doi: https://doi.org/10.1016/j.it.2010.05.006
38. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7(9):678-689. doi: https://doi.org/10.1038/nri2156
39. Delclaux C, Delacourt C, D'Ortho MP, Boyer V, Lafuma C, Harf A. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. Am J Respir Cell Mol Biol. 1996;14(3):288-95. doi: https://doi.org/10.1165/ajrcmb.14.3.8845180
40. McElvaney OJ, O'Reilly N, White M, et al. The effect of the decoy molecule PA401 on CXCL8 levels in bronchoalveolar lavage fluid of patients with cystic fibrosis. Mol Immunol. 2015;63(2):550-558. doi: https://doi.org/10.1016/j.molimm.2014.10.013
41. O'Dwyer CA, O'Brien ME, Wormald MR, et al. The BLT1 inhibitory function of alpha-1 antitrypsin augmentation therapy disrupts leukotriene B4 neutrophil signaling. J Immunol. 2015;195(8):3628-3641. doi: https://doi.org/10.4049/jimmunol.1500038
42. Reeves EP, Banville N, Ryan DM, et al. Intracellular secretory leukoprotease inhibitor modulates inositol 1,4,5-triphosphate generation and exerts an anti-inflammatory effect on neutrophils of individuals with cystic fibrosis and chronic obstructive pulmonary disease. Biomed Res Int. 2013;2013:560141. doi: https://doi.org/10.1155/2013/560141
43. Bergin DA, Reeves EP, Meleady P, et al. Alpha-1 antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin Invest. 2010;120(12):4236-4250. doi: https://doi.org/10.1172/JCI41196
44. McCarthy C, Dimitrov BD. Augmentation therapy for alpha-1 antitrypsin deficiency--not enough evidence to support its use yet! COPD. 2010;7(3):234-235. doi: https://doi.org/10.3109/15412555.2010.485108
45. von Haehling S, Hopkinson NS, Polkey MI, Niethammer M, Anker SD, Genth-Zotz S. Elevated TNFalpha production in whole blood in patients with severe COPD: the potential link to disease severity. Wien Klin Wochenschr. 2009;121(9-10):303-308. doi: https://doi.org/10.1007/s00508-009-1186-7
46. Bergin DA, Reeves EP, Hurley K, et al. The circulating proteinase inhibitor alpha-1 antitrypsin regulates neutrophil degranulation and autoimmunity. Sci Transl Med. 2014;6(217):217ra1. doi: https://doi.org/10.1126/scitranslmed.3007116
47. Mocsai A, Jakus Z, Vantus T, Berton G, Lowell CA, Ligeti E. Kinase pathways in chemoattractant-induced degranulation of neutrophils: the role of p38 mitogen-activated protein kinase activated by SRC family kinases. J Immunol. 2000;164(8):4321-4331. doi: https://doi.org/10.4049/jimmunol.164.8.4321
48. Yang W, Ni H, Wang H, Gu H. NLRP3 inflammasome is essential for the development of chronic obstructive pulmonary disease. Int J Clin Exp Pathol. 2015;8(10):13209-13216.
49. Di Stefano A, Caramori G, Barczyk A, Vicari C, Brun P, Zanini A, et al. Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax. 2014;69(6):516-524. doi: https://doi.org/10.1136/thoraxjnl-2012-203062
50. Wang H, Lv Ce, Wang S, Ying H, Weng Y, Yu W. NLRP3 Inflammasome involves in the acute exacerbation of patients with chronic obstructive pulmonary disease. Inflammation. 2018;41(4):1321-1333. doi: https://doi.org/10.1007/s10753-018-0780-0
51. Faner R, Sobradillo P, Noguera A, et al. The inflammasome pathway in stable COPD and acute exacerbations. ERJ Open Research. 2016;2(3):00002-2016. doi: https://doi.org/10.1183/23120541.00002-2016
52. Calverley PMA, Sethi S, Dawson M, et al. A randomised, placebo-controlled trial of anti-interleukin-1 receptor 1 monoclonal antibody MEDI8968 in chronic obstructive pulmonary disease. Respir Res. 2017;18(1):153. doi: https://doi.org/10.1186/s12931-017-0633-7
53. National Institutes of Health. Safety and efficacy of multiple doses of canakinumab (acz885) in chronic obstructive pulmonary disease (COPD) patients. NCT00581945. Published: December 28, 2007. Updated: June 30, 2011. Accessed: October 16, 2019. https://clinicaltrials.gov/ct2/show/NCT00581945
54. Scambler T, Jarosz-Griffiths HH, Lara-Reyna S, et al. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. eLife. 2019;8:e49248. doi: https://doi.org/10.7554/eLife.49248
55. Kim CS, Ahmad S, Wu T, Walton WG, Redinbo MR, Tarran R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB J. 2018;32(5):2478-2491. doi: https://doi.org/10.1096/fj.201701126R
56. Jiang D, Persinger R, Wu Q, Gross A, Chu HW. α1-antitrypsin promotes SPLUNC1-mediated lung defense against Pseudomonas aeruginosa infection in mice. Respir Res. 2013;14(1):122. doi: https://doi.org/10.1186/1465-9921-14-122
57. Abecassis A, Schuster R, Shahaf G, et al. α1-antitrypsin increases interleukin-1 receptor antagonist production during pancreatic islet graft transplantation. Cell Mol Immunol. 2014;11(4):377-386. doi: https://doi.org/10.1038/cmi.2014.17
58. Lewis EC, Mizrahi M, Toledano M, et al. α1-antitrypsin monotherapy induces immune tolerance during islet allograft transplantation in mice. Proc Natl Acad Sci U S A. 2008;105(42):16236-16241. doi: https://doi.org/10.1073/pnas.0807627105
59. Siebers K, Fink B, Zakrzewicz A, et al. Alpha-1 antitrypsin inhibits ATP-mediated release of interleukin-1β via CD36 and nicotinic acetylcholine receptors. Front Immunol. 2018;9:877. doi: https://doi.org/10.3389/fimmu.2018.00877
60. Tapia VS, Daniels MJD, Palazon-Riquelme P, et al. The three cytokines IL-1beta, IL-18, and IL-1alpha share related but distinct secretory routes. J Biol Chem. 2019;294(21):8325-8335. doi: https://doi.org/10.1074/jbc.RA119.008009
61. Petrache I, Fijalkowska I, Medler TR, et al. Alpha-1 antitrypsin inhibits caspase-3 activity, preventing lung endothelial cell apoptosis. Am J Pathol. 2006;169(4):1155-1166. doi: https://doi.org/10.2353/ajpath.2006.060058
62. Wang J, Gou W, Kim DS, Strange C, Wang H. Clathrin-mediated endocytosis of alpha-1 antitrypsin is essential for its protective function in islet cell survival. Theranostics. 2019;9(13):3940-3951. doi: https://doi.org/10.7150/thno.31647
63. McElvaney OJ, Zaslona Z, Becker-Flegler K, et al. Specific inhibition of the NLRP3 inflammasome as an anti-inflammatory strategy in cystic fibrosis. Am J Respir Crit Care Med. 2019. doi: https://doi.org/10.1164/rccm.201905-1013OC
64. Salliot C, Dougados M, Gossec L. Risk of serious infections during rituximab, abatacept and anakinra treatments for rheumatoid arthritis: meta-analyses of randomised placebo-controlled trials. Ann Rheum Dis. 2009;68(1):25-32. doi: https://doi.org/10.1136/ard.2007.083188